
 1

La Trobe University

Department of Computer Science and Computer Engineering

CSE2ARC/CS3 ARCHITECTURE

ASSIGNMENT 1

Due Date Monday, 9.30am, 10 October 2005

Objective To write a cache simulator and examine various cache performances
given a trace file.

Marks This assignment is worth 30% of the subject.

Requirements

You are required to program and implement a cache simulator in C, C++, or Java,
which will have the following inputs and outputs:-

 INPUTS OUTPUTS

a. Memory trace
 a. Total miss rate
b. Cache size
 b. Compulsory miss rate
c. Block size
 c. Capacity miss rate
d. Degree of associativity
 d. Conflict miss rate
e. Replacement policy

Memory trace � smalltex.din

Cache size � size of cache in bytes

Block size � size of blocks in bytes

Degree of associativity � direct (1-way), 2-way, 4-way, 8-way, fully associative

Replacement policy � Random and LRU
Total miss rate = compulsory + capacity + conflict miss rates

* The memory trace file (smalltex.din) is located at
 /home/csiii/csiiilib/arc/smalltex.din

Copy this file to your arc directory where you will be running your assignment from.
Submission Requirements
Using your cache simulator and using smalltex.din as your memory trace
determine the total miss rate, compulsory miss rate, capacity miss rate, and
conflict miss rate for the following cache configurations by varying the inputs as
indicated. Examine and comment on your results/observations in each case and
briefly compare them to a small selection of runs using dineroiv (commercial cache
simulator):-

1. Keeping block size constant (say 64 bytes) compare the different
replacement policy’s with several cache sizes (say 16, 64, 256, 512KB) and
associativities (direct, 2-, 4-, 8-way, fully associative). {See Fig5.6, p400 of

Cache

simulator

program

 2

prescribed text for a guide to tabulating your data} Comment
on your results/observations

2. Keeping replacement policy constant (either random or LRU) and block size

constant (say 64 bytes) collect total, compulsory, capacity, and conflict miss
rates for each of the following cache organizations:-

a. Cache sizes 4, 16, 64, 128, 256, 512 KB,
b. Degree of associativity 1-way, 2-way, 4-way, 8-way, fully.

 {See Fig 5.14, p424 as a guide to tabulating your data}
 Produce a graph of Total miss rate per type versus cache size {Fig 5.15
top graph only is required}. Comment on your results/observations.

3. For:-

a. Direct mapped cache, and
b. 4-way set associative cache (using either random or LRU

replacement policy)
Using the data collected in 2. above produce a graph giving total miss
rate versus block size and comment on your observations. {See Fig
5.16, 5.17 p427 as a guide.}

4. From your results make a recommendation as to which cache organization
you would select for a single level cache. Justify your recommendation.

Report
Your written submission/report should include clear documentation of:

a. cache simulator – both design and code,
b. all your results – tables, graphs, comments and recommendations,
c. several script runs only of both your simulator and dineroIV.

Electronic Submission
You are to electronically submit your cache simulator code:

>submit Arc “filename.c” {to be confirmed}
OR
 http://students.cs.latrobe.edu.au/submit/

Submission Date
Monday, 10 October 2005, 9.30am in the designated assignment “Arc” submission
box.

Late Submissions, Penalties, Plagiarism
The normal penalties for late submissions and procedures for occurrences of
plagiarism apply as outlined in the student handbook.

Outline Marking Scheme
Code = 50%
Results / correctness = 30%
Report = 10%
Overall presentation = 10%

Important notes

1. Your program must be able to be compiled and run on latcs”n” machines
running Linux,

 3

2. Use microtex.din when developing your simulator code,
however all reported/final results are to be on smalltex.din

3. I will be available for assignment consultation from Mon 6 Sep at most
times when I’m not either lecturing or at prac classes.

Assignment hints
1. You will notice smalltex.din has only two columns – you can ignore the

first column, the second column is the byte address in hexadecimal of
the byte address issued by the CPU. You can assume that:

a. All the addresses are in RAM (no page faults)
b. The addresses start at 0 and go through to some large number -

say ffffff = 16MB (check the trace file to make sure that no
address is present which is larger than 16MB)

c. Dynamically calculate which block_number the address is in
immediately after reading in each address, then, once you have
the block_number you can see if its in cache (according to your
cache mapping function).

1.

When we refer to the least recently used block in cache, this means the block that
was least recently used in time. Whenever a block is used (either called into cache
(a miss), or hit while in the cache), you will need to note that it then becomes the
most recently used block. How you implement this is entirely up to you, however I
would suggest that you keep it simple. This does not require any advanced
algorithms or data structures.

Smalltex.din is a very large file. While developing your code, you can just make a
file (eg. Microtex.din) which only has the first 100 entries. However, make sure that
when you obtain your final results you use the unchanged smalltex.din

Read in next address Calculate block number

number

Is block in cache?

Yes, hit++ No, has it

been there

before?

No, comp_miss++ Yes, is cache full?

Yes, Cap_miss++ No, conf_miss++

 When determining whether cache is full – it means over the whole cache regardless of the
mapping (due to its associativity), thus any free space even if the block can’t go there due to
its mapping/associativity - means that the cache is not yet full.

