
Employee Record Retrieval Program
Development Report

Wade Tregaskis
02557793

Subject: CSE22MAL
Lecturer: Richard Hall

26th September 2003

1

Contents

1.0 How the program works
 3
1.1 Overview
 3
1.2 Memory
 3
1.3 Record format
 3
1.4 Procedures vs Macros
 3
1.5 Strings
 3

2.0 Psuedo-code
 4
2.1 Data Structures
 4
2.2 Main
 4
2.3 Control functions
 4
2.4 Utility functions
 5

3.0 Conclusion
 10
3.1 What Went Right
 10
3.2 What Went Wrong
 10
3.3 Comments
 10

2

1.0 How the Program Works

1.1 Overview

 The program is based loosely around how you might construct such a thing in C. As such, there is a sequence of
code known as “main”, and several dozen procedures for performing specific tasks, such as reading from and writing to
employee database on disk. Execution ultimately loops within the main method until the user chooses to quit.

1.2 Memory

 To avoid having to recompile the program in order to adjust the maximum number of records, a pseudo-dynamic
memory system was implemented. This consists of a malloc and free function pair which manage memory within a spe-
cific space designated for that express purpose. The intention was to allow the runtime memory usage of the program to
vary.

 However, due to time limitations this ideal was not met. As it turns out, it is rather difficult in the x86 segment
model to implement even a simple dynamic memory system. As such, the system as it stands is fairly limited - memory
allocation is sequential, with free only being capable of releasing memory from the end of the linear allocation. In other
words, the dynamic memory acts like a stack in which you cannot remove items within it without first removing those
above.

 Nonetheless, it was an interesting exercise, and lent itself naturally to the use of pointers extensively, which re-
sulted in much greater efficiency and performance throughout the program.

1.3 Record format

 The record structure was designed for simplicity, whereby all fields but the salary are kept in their string form.
This neatly dealt with the large number issues, since for our purposes only the salary need be manipulated numerically.
For that purpose, the salary is stored as a 32-bit floating point number. It could have been stored as a string, and con-
verted to and from forms as needed, but given no real disadvantage either way, storing the salary as a 32-bit number
saved an extra 4 bytes per record.

 As mentioned, the other numerical values could also have been stored in their machine native forms, but this
would add extra overhead without any feature benefit - searching and sorting would need to make use of the FPU,
rather than simple byte comparisons. If memory usage were more of a consideration, the native data forms would per-
haps be preferable.

1.4 Procedures vs Macros

 It has been my observation from the start that macro’s are not sensible assembly constructs, due to the potential
issues with more than one parameter. Thus, I declined to use them for all but the simplest tasks, choosing instead to
write full procedures. This also helped significantly reduce the compiled code size.

 In hindsight it would have been better to use the stack for parameter passing, from a design point of view, since it
avoids a lot of headaches with regards to swapping registers around and the like. However, the performance advantage
of passing parameters in registers is clear, and thankfully for our purposes there was not a single occasion in which this
method was entirely impracticle.

1.5 Strings

 Due to my existing C/C++/ObjC experience I found it natural to consider strings as null terminated. Clearly this
was not an entirely sensible idea, given that the majority of string operations where with regards to displaying to screen.
This required some overhead in copying strings and replacing null terminators with ‘$’. This overhead could be reduced
significantly, but not entirely, given more time for development.

 But the conscious choice to standardise the terminating character made it much easier for me to manage data in
the program, of all sorts, and ensured that generic functions like stringCopy and displayString always worked as ex-
pected.

3

2.0 Pseudo-code

2.1 Data structures
STRUCTURE Employee

 [string] full name (30 + 1)

 [string] age (3 + 1)

 [string] employee number (10 + 1)

 [string] telephone (17 + 1)

 [string] state (20 + 1)

 [number] salary
END

2.2 Main
PROCEDURE Main

 INPUT maximum number of records to allow for

 CHECK desired number is practical

 ALLOCATE employeeList

 ZERO employeeList

 INPUT database file name

 OPEN database

 READ records into employeeList

 CLOSE database

 DO:

 DISPLAY main menu

 INPUT selection

 IF selection IS NOT 7 THEN

 IF selection IS 1 THEN

 DISPLAY records

 ELSE IF selection IS 2 THEN

 SORT records BY name

 ELSE IF selection IS 3 THEN

 SORT records BY age

 ELSE IF selection IS 4 THEN

 SORT records BY employee number

 ELSE IF selection IS 5 THEN

 FIND employee BY employee number

 ELSE IF selection IS 6 THEN

 incrementSalary

 ELSE

 DISPLAY invalid selection error

 END

 END

 WHILE selection IS NOT quit

 INPUT database file name

 OPEN database

 WRITE records from employeeList

 CLOSE database

 EXIT
END

2.3 Control procedures
FUNCTION increaseSalary

 DISPLAY request for employee number

 INPUT employee number

 FIND record FOR employee number

 IF found THEN

 DISPLAY request for increase percentage

4

 INPUT percentage

 INCREASE salary BY percentage

 ELSE

 DISPLAY record not found

 END
END

FUNCTION findEmployee

 DISPLAY request for employee number

 INPUT employee number

 FIND record FOR employee number

 IF found THEN

 DISPLAY record

 ELSE

 DISPLAY record not found

 END
END

FUNCTION displayList

 FOR EACH record IN list

 DISPLAY record

 END
END

FUNCTION displayMenu

 DISPLAY menu

 INPUT choice

 RETURN choice
END

2.4 Utility procedures
FUNCTION saveString

 FOR EACH record IN list

 WRITE record TO file

 IF file error THEN

 RETURN fail

 END

 END
END

FUNCTION loadString

 WHILE NOT list is full

 READ record FROM file

 IF error THEN

 RETURN fail

 ELSE

 IF record IS NOT null THEN

 ADD record TO list

 ELSE

 RETURN success

 END

 END

 END

 IF list is full AND file is not finished THEN

 RETURN fail

 ELSE

 RETURN success

 END
END

FUNCTION displayRecord

 DISPLAY name

 DISPLAY age

5

 DISPLAY employee number

 DISPLAY telephone

 DISPLAY state

 CONVERT salary TO string

 DISPLAY salary as string
END

FUNCTION reverseString

 SET a TO start of string

 SET b TO end of string

 WHILE a IS BEFORE b

 SWAP a AND b

 END
END

FUNCTION doubleWordToString

 LOAD value INTO fpu

 WHILE value in fpu IS NOT null

 COMPUTE remainder OF value in fpu DIVIDED BY 10

 CONVERT remainder TO ascii number

 APPEND ascii number TO result

 DIVIDE value in fpu BY 10

 END

 reverseString result

 RETURN result
END

FUNCTION stringToDoubleWord

 LOAD null INTO fpu

 WHILE NOT end of string

 MULTIPLY value in fpu BY 10

 ADD value OF current digit

 END

 RETURN value in fpu
END

FUNCTION stringToWord

 SET value TO null

 WHILE NOT end of string

 MULTIPLY value BY 10

 ADD value OF current digit

 END

 RETURN value
END

FUNCTION getLine

 SET buffer size character TO size of buffer

 call dos input

 IF error THEN

 RETURN fail

 ELSE

 RETURN result

 END
END

FUNCTION stringReplace

 WHILE NOT end of string

 IF current character EQUALS search character THEN

 REPLACE current character WITH replacement character

 END

 END

6

END

FUNCTION findMinimum

 SET offset TO null

 WHILE NOT end of string

 IF current character EQUALS search character OR termination character THEN

 RETURN offset

 ELSE

 INCREMENT offset

 END

 END

 RETURN fail
END

FUNCTION stringLength

 SET offset TO null

 WHILE NOT end of string

 INCREMENT offset

 END

 RETURN offset
END

FUNCTION stringSwap

 WHILE count IS NOT null

 READ byte FROM string one

 READ byte FROM string two

 WRITE byte from string one TO string two

 WRITE byte from string two TO string one

 DECREMENT count

 END
END

FUNCTION displayMessage

 COPY message INTO temporary buffer

 REPLACE null IN message in temporary buffer WITH dollar sign

 call dos display
END

FUNCTION memSet

 WHILE count IS NOT null

 WRITE value TO current position in string

 INCREMENT current position in string

 DECREMENT count

 END
END

FUNCTION searchForNumber

 searchForRecord WITH offset of number field within record structure
END

FUNCTION searchForRecord

 WHILE NOT end of list

 IF search value EQUALS search field of current record THEN

 RETURN current record

 ELSE

 NEXT record

 END

 END

 RETURN not found
END

FUNCTION sortList

 REPEAT record count - 1 TIMES:

 SET current record TO start of list

7

 REPEAT current above number of times - 1 TIMES

 IF sort field of current record IS GREATER THAN sort field of next record THEN

 SWAP current record AND next record

 ELSE

 NEXT record

 END

 END

 END
END

FUNCTION stringCompare

 REPEAT:

 IF NOT current character of string one EQUALS current character of string two THEN

 IF current character of string one IS LESS THAN current character of string two THEN

 RETURN less than

 ELSE

 RETURN more than

 END

 ELSE

 IF current character of either string IS null THEN

 RETURN same

 ELSE

 NEXT character of string one

 NEXT character of string two

 END

 END

 END
END

FUNCTION stringCopy

 call stringCopyWithLength IGNORING returned length
END

FUNCTION stringCopyWithLength

 SET length TO null

 WHILE NOT end of string AND NOT current character of source EQUALS null

 COPY current character of source TO current character of destination

 INCREMENT length

 END

 RETURN length
END

FUNCTION malloc

 IF requested memory size IS GREATER THAN available memory size THEN

 RETURN fail

 ELSE

 STORE current memory position

 INCREASE memory position BY requested memory size

 RETURN stored memory position

 END
END

FUNCTION free

 IF address IS valid THEN

 SET memory position TO address

 END
END

FUNCTION saveRecord

 WRITE name TO file

 WRITE age TO file

 WRITE employee number TO file

 WRITE telephone TO file

 WRITE state TO file

 CONVERT salary TO string

 WRITE salary as string TO file

8

END

FUNCTION readRecord

 READ INTO buffer FROM file

 IF amount read IS null THEN

 RETURN null AND no error

 ELSE

 ALLOCATE new record

 COPY name FROM buffer INTO new record

 IF buffer is empty THEN

 RETURN error

 ELSE

 COPY age FROM buffer INTO new record

 IF buffer is empty THEN

 RETURN error

 ELSE

 COPY employee number FROM buffer INTO new record

 IF buffer is empty THEN

 RETURN error

 ELSE

 COPY telephone FROM buffer INTO new record

 IF buffer is empty THEN

 RETURN error

 ELSE

 COPY state FROM buffer INTO new record

 IF buffer is empty THEN

 RETURN error

 ELSE

 CONVERT salary as string TO salary as number

 COPY salary as number INTO new record

 END

 END

 END

 END

 END

 END

 MOVE position in file BACK BY number of bytes left in buffer

 RETURN new record
END

FUNCTION min

 IF value one IS GREATER THAN value two THEN

 RETURN value two

 ELSE

 RETURN value one

 END
END

9

3.0 Conclusion
3.1 What Went Right

 My decision to make everything as general as possible worked wonderfully. There is only one sort function, which
can sort any string field of the record. Likewise for the search function, although it is only utilised for one field in particu-
lar. Choosing null as the terminating character for strings was perhaps a mistake, given that the majority of uses re-
quired a dollar sign, but nonetheless the unity in termination type allowed for reliable, general-purpose string and mem-
ory functions.

 The choice of using an array of record pointers, rather than the records themselves, resulted in sort times that
were much less than 55ms (the smallest measurable unit of time), even given the use of bubble sort, and even with as
many as 300 records.

 Surprisingly, writing most of the code in a “sterile” environment (i.e. not on a PC) enforced good practices and reli-
able coding, and nearly all the problems I encountered were design issues. Certainly, I had not a single significant error
due to a mistyped operand or improper opcode, or whatever else. Clearly when you’re writing with only your head to
check your code, you do so much more thoroughly.

 Use of the FPU was strangely easy. Although I dislike its limited stack-based design, for our very simple usage it
was sufficient. Perhaps I was just lucky in getting all my FPU code to work first time, but given that little else I wrote
worked first time, it seems a clear abnormality.

3.2 What Went Wrong

 There are a lot of things I’m not fully happy about, although nothing really significant, which I suppose is some-
thing of a blessing. I would rather have stored the numerical values as actual numerical values, rather than as strings,
because it saves a significant amount of space. It would also make searching and sorting those fields much faster.
However, as mentioned in earlier sections, to do so would have required more time than was available, and would also
reduce the reusability of a lot of the record-handling functions, like those for search and sort.

 File handling [now] seems to be quite strong, but isn’t tested as much as I’d like, and was up until the very last
minute prone to breaking every time I changed the sample file around a bit. There was some quite exotic errors, such
as when two records happened to be exactly 88 bytes together, and there was no return on the last record... this had the
result of ignoring the last record. It, like many other such bugs, seem to be fixed now, but as I’ve said, I wouldn’t trust it.
Buffer management is a lot harder in assembly than higher languages.

 The other significant problem was simply time. Due to other assignments - most notably AI - being due in at
around the same time, I wasn’t able to even start the MAL assignment until just a week before it was due. This resulted
in a couple of late nights in the labs, which were hardly entertaining.

 Even in hindsight, there was little that could be done about this. Assignment load for the last two weeks has been
excessively high, and given that we were only given the assignment shortly before then, there seems to be no good so-
lution. My hope for future years is that the assignment be handed out earlier. Most people will still leave it too late, but
at least those like me who do try to get in early will have a much easier time, and be able to produce a much better pro-
gram as a result.

 There were a few other minor issues, most of which have been mentioned in passing in other sections. Most of
these were simply due to inexperience, and thus, as always, next time will be much easier.

3.3 Comments

 Having programmed to a degree in PPC assembly before, in addition to taking concurrently the subject
ELE22MIC, I can say on reasonable grounds that x86 assembly is a real pain in the proverbial. I hate to consider what it
would be like programming a modern x86, like the Pentium 3 or 4, given the hundred-fold increase in idiosyncrasies over
the already challenging 8086.

 While it was a novel experience, I think it has served mainly to enforce a respect for high level languages, and to
prove true the common notion that x86 assembly is diabolical.

 My only others thought is that the marking scheme seems pretty scary if you can’t get things to work properly. I
found that the vast majority of the effort went in to just getting most things working a bit, let alone properly reading in the

10

file and so forth. It seems that the marking scheme should allow for people who simply can’t get things to work right -
like reading the records in properly - but whom have still written all the other code, i.e. for searching, sorting, etc.

11

