
RFS ASSIGNMENT
A review of the Chameleon Fault Tolerance System

Wade Tregaskis
Tuesday, 9 May 2006

	

Introduction	
 1
Design Goals of Chameleon	
 2
System Architecture of Chameleon	
 3
Fault Tolerance Strategies Involved	
 7

Fault/Error Detection	
 7
Fault/Error Isolation/Containment	
 10
System Reconfiguration	
 15
System Recovery	
 16

Chameleon System Performance Evaluation	
 17
Reliability	
 17
Availability	
 17
Safety	
 18
Security	
 18
Responsiveness	
 19
Fault Coverage	
 19
Efficiency	
 20

Case study: Web service application	
 21
Future Work	
 24
“Sed quis custodiet ipsos custodes?”	
 24
Live-lock	
 24
Security	
 25
Electing the active FTM	
 25
Heterogeneous Computing	
 26
Single point of failure	
 26
Fanout ARMOR	
 26
Atomicity in Surrogate Manager ARMORs	
 27

Conclusion	
 28
References	
 29

Cover image courtesy of Bob Wenokur of bobtography, http://www.bobtography.com/

A review of the Chameleon Fault Tolerance System	

Introduction
Chameleon is a software fault tolerance system developed by Zbigniew T. Kalabarczyk,
Ravishankar K. Iyer, Saurabh Bagchi & Keith Whisnant at the Center for Reliable and
High Performance Computing at the University of Illinois at Urbana-Champaign, U.S.A.
Their work on the subject was sponsored in part by NASA’s Jet Propulsion Laboratory, as
well as Tandem Computers (now part of Hewlett-Packard).

This document reviews the system, based on the group’s published paper, “Chameleon: A
Software Infrastructure for Adaptive Fault Tolerance” [1]. For brevity, this will be
referred to as “the paper” throughout this document.

The paper presents the design overview for Chameleon, considering its application and
purpose, as well as how its practical implementation fared in real world testing. All this
will be summarised and analysed in this document.

This document then considers a test case, considering the use of Chameleon for a generic
web services application. In particular, what benefits Chameleon provides to the service
and with what costs.

Finally, this document considers areas of Chameleon where additional work is necessary,
and possible future directions.

Wade Tregaskis • 02557793	
 CSE41RFS 2006

A review of the Chameleon Fault Tolerance System	
 1

Design Goals of Chameleon
The purposes of Chameleon is to provide an adaptive infrastructure for software fault
tolerance. ‘Fault tolerance’ in this case encapsulates not only fault detection or masking,
but also recovery from faults, and perhaps even adaptation around known faults.

The authors note that traditionally fault tolerance has been provided by dedicated
systems, whether hardware or software, for which client software must be explicitly
designed and written. Their objective, in contrast, with Chameleon is to provide
transparent fault tolerance for any and all off-the-shelf software. In addition, they
require that this be achieved strictly in software, on commodity hardware, within a
heterogeneous computing environment.

Chameleon is, as the authors acknowledge, far from the first software fault tolerance
system. Many others, such as ISIS [2] and SIFT [3], are acknowledged in the paper. The
authors note the distinction between these systems and Chameleon; some systems, such
as ISIS, focus on distributed processing, from which fault tolerance is something of a
limited side effect; others, like SIFT, provide an environment in which fault tolerant
software can be written, but do nothing for software outside this encapsulation. The goal
of Chameleon is to overcome these limitations, and to achieve fault tolerance specifically,
not as a side effect of any other means.

Beyond the fundamental purpose of providing fault tolerance, Chameleon is intended to
do so in an adaptive, extensible fashion. It does this by defining the notion of ARMORs
(Adaptive, Reconfigurable, and Mobile Objects for Reliability), software units which
perform some function to serve the fault tolerance system. ARMORs can be moved
about the system - across computer networks - to be instantiated and [re]configured on
demand, to suit the individual needs of each task. Each class of ARMOR serves a
particular purpose. For example, one class of ARMOR may provide checkpointing
functionality, another voting functionality, or another process execution. Linked together
they provide a cohesive fault tolerance strategy, with appropriate management and
autonomy. ARMORs communicate with each other over some standard network
protocol, e.g. TCP/IP, via special ARMORs called Daemons.

The generic nature of ARMORs, and the flexibility with which they can be used, are
intended to improve the general applicability of Chameleon by providing a general
purpose architecture, with highly reusable components, but with the capability for
specific tuning for each task that is performed within the system.

Wade Tregaskis • 02557793	
 CSE41RFS 2006

A review of the Chameleon Fault Tolerance System	
 2

System Architecture of Chameleon
As noted, the general architecture of Chameleon revolves around
basic units called ARMORs - Adaptive, Reconfigurable, and
Mobile Objects for Reliability. Each ARMOR has a single defined
purpose, but may be composed of multiple components,
many of which are shared amongst other ARMORs -
e.g. all ARMORs share a common communication
infrastructure.

Multiple instances of any particular type of ARMOR may
exist within the system, across multiple computers within the network.
They are created on demand, compiled from source on the target host as required.

There are fundamentally three types of ARMORs, to provide the three key core
competencies of the system:

1. Managers - these configure and operate other ARMORs, including
other managers, forming a control hierarchy. They have the ability
to install other ARMORs on managed computers, configure those
ARMORs and then later retire them, as necessary.

The highest level manager is the Fault Tolerance Manager (FTM), which overseas the
entire Chameleon system. It interfaces primarily with lower level Managers, known
as Surrogate Managers (SMs), which concern themselves with the details of a
particular job’s execution.

2. Daemons - these provide communication between ARMORs on separate
machines, acting as gateways between the network and local ARMORs.
They are responsible for the actual local installation and execution of
ARMORs, and for monitoring those local ARMORs within the capacity of
the local environment. All communication between ARMORs on separate hosts is
routed via the daemon on each of those hosts.

Daemon ARMORs also provide responses, as appropriate, to Heartbeat ARMORs,
as a way of monitoring the status of the daemon, it’s host, and local ARMORs.

3. Common - a catch-all category for all other types of ARMORs, these
are generally the nuts and bolts of the system; the ARMORs for
performing basic tasks like executing a process, detecting process
failures, voting on results in redundant executions, etc. Some key types
include:

SMFTM

Wade Tregaskis • 02557793	
 CSE41RFS 2006

A review of the Chameleon Fault Tolerance System	
 3

Heartbeat - This ARMOR simply monitors the responsiveness of a
particular host or other ARMORs. It may do this in any number of
fashions, such as a period ICMP ping to the monitored host, to ensure

it has not crashed. If a monitored host or ARMOR fails to respond, the Heartbeat
ARMOR notifies it’s SM, which can take appropriate action.

Execution - Installs & compiles (as necessary) applications on a
particular host, then executes those and returns the results of that
execution to it’s SM. Has some rudimentary fault handling in the case

of process failure, such as restarting the process.

Checkpoint - Provides a facility for applications to checkpoint at
defined intervals, saving their state to permit backtracking or re-
execution at a later date. Interacts heavily with the Execution

ARMOR, particularly when it comes time to restart from a checkpoint.

Voter - Provides a mechanism for deciding on the authoritative result of
redundant executions. The mechanism may be as simple as a majority
(k-of-n) consensus algorithm, looking for identical outputs, or may

compute a variance between results, and permit some defined margin of variance.

Initialisation - Kind of a forward scout for new hosts that join the
system. When installed and executed, it compiles a profile of the host,
which can be made available to it’s SM (and the FTM) and used as

input for heuristics such as determining the best host on which to run a new process.

Fanout - Provides duplication of arbitrary data, communicating that
data to some number of distinct ARMORs, making sure that all those
ARMORs have a consistent state as regards the data - i.e. either they

all receive the exact same data, or they receive nothing.

The basic premise is that some arbitrary host starts up a FTM (and daemon, and
Heartbeat ARMOR), which becomes the head of the Chameleon system. Other hosts
contact the FTM to join the system, installing daemon ARMORs and so forth. When a
job is submitted to the system, the FTM will create a SM for that job, and the SM will
then be responsible for acquiring the resources, configuring the ARMORs, and the
complete execution of that job. The FTM only hears back the important data from each
SM, such as final job results, or any faults that occur. In this way the FTM is only
concerned with commissioning and retiring jobs and their associated SMs, not the nitty
gritty of each job’s operation.

Heartbeat

Execution

Checkpoint

Voter

Init

Fanout

Wade Tregaskis • 02557793	
 CSE41RFS 2006

A review of the Chameleon Fault Tolerance System	
 4

As the ultimate manager of the Chameleon system, the FTM is the interface between the
system and the user. As such, it will be expected to provide typical management
functionality - the ability to launch and monitor jobs, to record and notify the user of
failures, etc. The FTM accepts jobs described using a special semantic language, which
specifies the requirements for the job, in terms of reliability, security, etc. The FTM then
decides how best to meet those requirements, given it’s available library of ARMORs,
the network environment at the time, and the various Fault Tolerant Execution
Strategies (FTES) it is aware of. Presumably these FTESs are stored in an easily modified
form such that they can be added to as new strategies are devised.

The FTM is also a critical point of failure, and consequently a backup FTM is also
initialised alongside the primary FTM. All ARMORs send data to both the primary and
the backup FTM. If an ARMOR detects a problem with the primary FTM, it can notify
the backup FTM. The backup FTM can then decide, if necessary, to forcefully retired
the primary FTM, promoting itself to the position. Another backup FTM is then
configured to monitor the new primary FTM.

The idea behind the generalised architecture, with numerous ARMORs working
together, is to provide flexibility. Each job submitted into the system can have different
requirements1. For example, one particular job may require high reliability; that is, that
its results are correct. The FTM may thus decided to use Triple Modular Redundancy
(TMR) as its FTES. Thus, it creates a new SM and tells that SM the FTES being used
(TMR). The SM then creates three Execution ARMORs and a Voter ARMOR, as
dictated by the FTES. The resulting configuration is as shown in figure 1.

When the Voter has all the results, it can determine if there is a majority consensus (for
example), and communicate the result to it’s SM. The SM may then communicate a
successful result back to the FTM. Or, perhaps the Voter ARMOR is configured such
that if the there is not unanimous consensus amongst the three executions, it will
perform additional executions (via the SM) to reach a higher certainty (e.g. 90%,
requiring at least nine identical results for every divergent result).

Wade Tregaskis • 02557793	
 CSE41RFS 2006

A review of the Chameleon Fault Tolerance System	
 5

1 Indeed, particular tasks within a single job can have completely different requirements.

Figure 1 - Example TMR Configuration

In the above example, the system provides TMR (Triple Modular Redundancy), with the
aim of handling faults by masking them. This is but one possible FTES. As another
example, consider another job which simply needs to be run through to completion,
without strict reliability requirements, but which takes a very long time to complete.
TMR is likely not the best FTES for this job. Instead, an FTES involving checkpointing
is more suitable. This job could be run by an Execution ARMOR coupled with a
Checkpoint ARMOR; periodically the Checkpoint ARMOR will save the state of the
job, so that in the event of an error the job can be rolled back to the most recent
checkpoint. In this case, the primary focus is on managed restart in the event of a
failure, not fault masking. This FTES does not offer the same assurances of reliability as
the TMR FTES, but may be a better trade-off given the significant resources required for
this long-running job.

There are numerous other cases that could be considered, but that concludes a suitable
introduction to the system. The point to be taken away from these examples is that the
system can provide a wide range of strategies for detecting and handling faults, as suited
to each particular job, or indeed each sub-task of a job.

SM

FTMFTM

Execution Execution Execution

Voter

Wade Tregaskis • 02557793	
 CSE41RFS 2006

A review of the Chameleon Fault Tolerance System	
 6

Fault Tolerance Strategies Involved
The Chameleon approach is quite adaptive, and as such the overall FTES used for any
particular task is typically a hybrid of several different fundamental FTES. Nonetheless,
there are clear strategies for which each ARMOR is tailored.

It is important at this point to differentiate between faults, errors and failures. Using the
definition provided by Ben Soh in the RFS lecture notes [4], the three terms are defined
as follows:

• Faults are an undesirable occurrence, such as a random hardware glitch, loss
of network connectivity, etc. They may be transient (the fault occurs and
then disappears without need for intervention), intermittent (the fault is always
present, but does not always induce an error), or permanent (the fault is always
present and always induces an error).

• Errors are the incapability of the system to correctly handle a fault - such as a
process assuming it has access to a particular file or network port, when it is
not always the case, or not being able to handle improperly formatted input.
Errors are always present in a system - they are a logical failure of the system.
They only cause failures when a fault occurs which invokes the erroneous behaviour.

• Failures are an instance in which a fault occurs, and because
of an error leads to incorrect results. This may be a simple
outright failure, such as an application crashing or locking up,
or a more subtle corruption of output, such that it is
inaccurate, incorrect, or even outright garbage. Catastrophic
failures are those which lead to serious damage - e.g. injury, loss
of life, or other such major consequences.

Throughout this document “fault” is typically used in a more specific sense, meaning any
fault which, through an error, leads to failure. Faults which never lead to failures are not
a focus of Chameleon.

Chameleon generally treats processes as black boxes. When failure is discussed in this
document, it refers to failure of a process, as seen by an external viewer (i.e. Chameleon).
Failures which occur inside a process and are recovered from inside that process are not
of concern to Chameleon; it is certainly possible and always encouraged for individual
processes and applications to provide as much of their own fault tolerance as possible, in
addition to whatever abilities are conferred to them from systems like Chameleon.

F A U L T / E R R O R D E T E C T I O N
The first, critical step in a fault tolerant system is the acceptance that faults will occur,
and thus there must be mechanisms for detecting them. Although it is common to talk

Wade Tregaskis • 02557793	
 CSE41RFS 2006

A review of the Chameleon Fault Tolerance System	
 7

about “fault” or “error” detection, such things are rarely detected first hand. Instead,
what is typically watched for are failures. Failures, from Chameleon’s point of view, are
nearly always detectable by watching an application’s state and I/O, since by definition
failures must have an effect on the application’s function, as externally visible. Since
failures are relatively easy to monitor, the errors that cause them can be inferred. From
these, likewise, can be inferred, to a degree, what fault occurred.

On the other hand, faults which do not trigger errors (and subsequent failures) are rarely
detected. However, this is generally okay - if a failure does not result, then the fault is
likely not of concern. For example, if a network link is temporary lost - a fault - but the
program detects this and uses a backup link, then no error is present, ergo no failure
results, and Chameleon need not be overly concerned2. Conversely, if the program
instead aborts when it cannot use the link, that is an error, which Chameleon handles.
Nonetheless, it is useful to detect all faults, whether or not they trigger errors or cause
failures, as a high rate of faults may indicate a higher likelihood of encountering an error,
even if it has not yet. While Chameleon does not have provisions, as presented in the
paper, for predicting failures, it is certainly something that could be added3.

Detecting failures is fundamental and critical, as the end user needs to know that the
results they ultimately receive came from a successful run4 of their application; if failures
pass through undetected, the results are not trustworthy.

Failures are divided into three domains in the paper (which refers to them as errors,
although this is not consistent with the terminology used in this document):

1. Abnormal termination - where an application exits unexpectedly, whether by
crashing or voluntarily on internal detection of an error.

2. Value-domain - where the output of an application is incorrect, due to, for example,
a hardware fault leading to corrupt data or incorrect control flow.

3. Time-domain - where an application ceases to make progress in it’s task, becoming
“live-locked”, and requiring external termination and recovery.

While failures in the Abnormal Termination domain are relatively trivial to detect, those
in the other domains are not always so easy to catch. The difficulty in detecting value or
time-domain failures is that many do not visibly manifest themselves outside the

Wade Tregaskis • 02557793	
 CSE41RFS 2006

A review of the Chameleon Fault Tolerance System	
 8

2 Excepting, of course, when considering efficiency, but that is for a separate discussion, included later in this
document.

3 Indeed, the paper acknowledges the usefulness of such functionality, as part of the larger issue of resource
management.

4 Note the difference between a successful run of an application, and correct results. A successful run indicates no
errors occurred within the application; if there was an error in the input to start with, then of course the output may still
be incorrect.

application. Logic (software) errors in particular may not cause the application to crash,
but may nonetheless render the application’s output incorrect. For a general purpose
system like Chameleon, without expert knowledge on each application, this poses a
problem.

For faults which are transient or intermittent, each execution of the application may
produce different results. Thus, FTES of multiple execution (e.g. dual-execution, TMR,
etc) - whether spatial or temporal - can detect these faults (and possibly mask them). The
Voter ARMOR is used extensively in these cases.

If, on the other hand, the faults are permanent - given a particular environment at least -
FTESs such as TMR will not necessarily discover them. There may be some way to infer
the presence of such a fault by analysing the output in context5, but this is not something
the Chameleon can do with it’s generic ARMORs6. What Chameleon can do is run
applications redundantly in different environments, to try and weed out any faults or
errors particular to an environment. In can do this, for example, by using TMR with
each of the three executions run on different architectures.

Other faults may manifest as application crashes (or worse, host crashes). These are
trivial to detect - in the case of the application itself crashing, the Execution ARMOR
will be notified by the host operating system when the application exits, and can check
it’s exit status and outputs. The SM can then act appropriately to reinstate the
application.

If a host crashes, there is no direct notification mechanism. Thus the reason for the
existence of the Heartbeat ARMOR, to continually poll a given host, and notify the
FTM if it does not respond for an extended period. The FTM can then, at it’s
discretion, initiate recovery of the unresponsive host’s ARMORs and applications on
another host.

Chameleon can also detect live-lock in at least some cases. The Voter & Execution
ARMORs both include functionality for detecting live-lock, by essentially benchmarking
a given application or ARMOR with a short sample task, then using that to gauge how
long the real task should take. Unfortunately, this relies on being able to determine the
amount of time required for a given task, which may not be predictable. Thus, live-lock
detection is not always reliable. It can be aided by consideration of user parameters on
the application; by manually specifying a maximum duration for the application’s
execution. It can also be negated, to a degree, by regular checkpointing - thus shorter

Wade Tregaskis • 02557793	
 CSE41RFS 2006

A review of the Chameleon Fault Tolerance System	
 9

5 This comes into the domain of expert software, a trivial example of which is knowing that the output for a given
process should be a alphanumeric, comma-separated list, and thus knowing when it is instead outputs binary blobs that
something has gone wrong.

6 Although, of course, the extensibility of Chameleon certainly permits the addition of “expert” ARMORs, which could
perform application-specific validation.

time-outs can be used, as recovery need only go back to the latest checkpoint, not start
execution again from scratch.

Nonetheless, live-lock detection is something the paper seems to brush under the rug, as
it were, without presenting a satisfactory solution to. It is certainly a difficult problem,
one which may not have a perfect solution.

Beyond these faults & errors in the applications themselves, there may be faults & errors
within the host or network. For example, for a distributed application - one that
executes in separate processes, possibly on separate hosts, with communication between
them - faults may occur that cause corruption of communications. In an advanced
Chameleon implementation, this type of failure can be detected; a to-be-designed
ARMOR can be installed to watch the communications of each process, to ensure that
all processes see the same I/O between them - i.e. that communications are not lost,
corrupted or improperly duplicated.

Such an implementation, however, requires hooks into the operating system on the
application’s host in order to monitor it’s I/O. Such functionality is not usually provided
easily; typically it requires super-user privileges at the least. As such, while it is noted in
the paper, it is not presented as a key feature of Chameleon.

Alternatively, Chameleon can provide an API to the distributed application to allow it to
work with Chameleon in performing tasks such as checkpointing. Alas, this is of course
only applicable for specially developed applications.

While it’s been shown thus far how faults are detected in application software, how are
faults in the Chameleon system - it’s component ARMORs and network - detected? In
short, there is minimal provision for this. ARMOR crashes are detected by whatever
ARMOR is upstream of the failure (typically a daemon or manager). But for failures
other than outright crashes, there is little protection. While each ARMOR will perform
basic validation of data it receives from other ARMORs, there is little redundancy in the
Chameleon network itself, aside from the backup FTM and the general flexibility in the
system for restarting lost or broken ARMORs. The paper notes this deficiency, but does
not present any significant solution. It can be immediately seen that simply applying the
system to itself does not solve the problem, merely make it recursive and ultimately
worse (more unreliable components simply increases the probability of failure).
Algorithmic changes are ultimately necessary to improve Chameleon’s own fault
tolerance, which is discussed later in this document, in the section on Future Work.

F A U L T / E R R O R I S O L A T I O N / C O N T A I N M E N T
Once a fault or error has been detected, the first key action is to contain the fault. This
primarily means trying the following, in order of preference:

1. Preventing the fault triggering an error.

Wade Tregaskis • 02557793	
 CSE41RFS 2006

A review of the Chameleon Fault Tolerance System	
 10

2. Preventing the error causing failure.

3. Preventing failure from propagating.

Chameleon is primarily concerned with the 3rd stage; the majority of errors in the first
stage are in the applications Chameleon executes, or in the hardware it operates on, and
both are beyond Chameleon’s abilities to directly fix. Chameleon can interject for some
errors, to prevent failures - e.g. ensuring reliable communications between processes - but
again is largely limited by forces outside it’s control.

In order to ensure the safety of the entire system, all failures must be either properly
handled (e.g. masking), or else the task cancelled and the user uniformed of the failure.
Strategies such as TMR provide the ability to mask some faults and errors, which is a
reasonable approach, but only for failures rare enough as to be unlikely to effect the
result of the vote (i.e. highly unlikely to occur in two of three parallel executions). And
this only covers failures in application output; for faults that cause the application to
crash or live-lock (stop making any more progress), redundant executions may not be the
solution.

Figure 2 - A multi-stage application

SM

FTMFTM

Execution

Execution

Execution

Wade Tregaskis • 02557793	
 CSE41RFS 2006

A review of the Chameleon Fault Tolerance System	
 11

For faults which lead to incorrect outputs, it is imperative that the incorrect data does
not propagate, whether back to the user or just to the next stage in the job. Consider an
example case, where a series of processes are executed in series, each taking the previous
processes’ outputs as it’s input. If this were executed naively, as shown in figure 2
(previous page), an error in the data at any point would continue through the system,
most likely producing incorrect data at the end.

If this entire system is run in parallel, say in triplicate - as shown in figure 3, below - then
reliability is improved somewhat - the odds of the same failure occurring in two parallel
paths is quite small. Thus, the system is reasonably safe. However, the odds of two
parallel paths having failures of any kind is still quite large. This will prevent the Voter
from reaching a conclusion, and reduces the reliability of the system.

Figure 3 - Naive TMR implementation for a multi-stage application

SM

FTMFTM

Execution

Execution

Execution

Execution

Execution

Execution

Execution

Execution

Execution

Voter

Wade Tregaskis • 02557793	
 CSE41RFS 2006

A review of the Chameleon Fault Tolerance System	
 12

Note, however, that the probability of failure over all three stages is the sum of the
probability of failure at each stage. Thus, if failure is detected at each stage (and
corrected), then probability of an overall failure is greatly reduced, and the reliability and
safety of the system is increased.

Thus, Chameleon would prefer to execute each individual stage separately, with a Voter
ARMOR choosing the master results at each stage - see figure 4 (next page). The Voter
can then pass the chosen results to a Fanout ARMOR, which can distribute the exact
same results to each parallel copy of the next process.

Other than this redundant execution approach, Chameleon does not really provide any
other mechanisms for containing I/O faults & errors. In particular, as previously noted,
without special OS-dependant extensions to monitor all I/O, Chameleon cannot provide
acceptable levels of containment for processes which communicate amongst each other
outside of Chameleon. As such, it is not easily applied to distributed applications. Given
that Chameleon’s favoured FTES involve redundant execution, which distributed
applications typically provide anyway, this may not be as much a loss as it first appears.

A final note on possible problems - while the Checkpoint ARMOR can rollback to the
previous checkpoint once an error is detected, there is no guarantee the error was not
already manifest in the checkpoint, and may simply recur. This scenario is not detailed in
the paper; presumably the Checkpoint ARMOR could progressively roll back through
checkpoints until the error no longer recurs, but no exact mechanism for this is
presented. The Checkpoint ARMOR is still covered by the Execution ARMOR, so if
nothing else after a certain number of failures the Execution ARMOR will terminate the
local process and defer to the SM, which may try to reconfigure the system around the
problem.

Wade Tregaskis • 02557793	
 CSE41RFS 2006

A review of the Chameleon Fault Tolerance System	
 13

Figure 4 - Improved TMR implementation for a multi-stage application

SM

FTMFTM

Execution

Execution

Execution

Execution

Execution

Execution

Execution

Execution

Execution

Voter

Fanout

Voter

Fanout

Voter

Wade Tregaskis • 02557793	
 CSE41RFS 2006

A review of the Chameleon Fault Tolerance System	
 14

S Y S T E M R E C O N F I G U R A T I O N
In the case of some types of failures, such as a process crashing, merely trying again is not
always a solution; the failure may recur indefinitely. Consequently, Chameleon is
designed to reconfigure itself in response to repeated failures.

To start with, the simplest response to a process failure is to restart the process. This is
the Execution ARMOR’s first reaction to such an event. For transient or even
intermittent faults, this may be acceptable - sooner or later the application will conclude
successfully. Chameleon goes further than this, however - if an application fails
repeatedly, the Execution ARMOR defers to its SM, which may decide to move the
application to another host. After further failures, it may even try a different platform.

For example, if a process fails on a given host multiple times, the responsible Execution
ARMOR notifies its SM. The SM may decide to move the process, along with its
Execution ARMOR, to a different host, and try again. This provides responsive
temporal redundancy. All the while, other fault tolerance mechanisms may be in play -
for example, above all this there may be a Voter ARMOR which takes the final output,
once the crashing has been resolved. See figure 5. The Voter ARMOR need not know
that any of it’s sources had to relaunch their process, or were moved to another host.

Figure 5 - Black box behaviour of the Execution ARMOR

SM

FTM

Execution Execution Execution

Voter

Execution

Wade Tregaskis • 02557793	
 CSE41RFS 2006

A review of the Chameleon Fault Tolerance System	
 15

An emphasis is placed on retrying repeatedly failing processes on different architectures,
to remove from the equation as many environmental factors as possible. A still failing
process is eventually just aborted, with the user notified of the problem. The assumption
at this point becomes that the process has a bug in it which the user must resolve. In this
case it is beyond the capabilities of Chameleon to fix, so the task terminates, but clearly
as a failure, so that the system’s safety is ensured.

S Y S T E M R E C O V E R Y
It has already been mentioned several times that failure of a process leads to its execution
being reattempted. Further failures may prompt the SM responsible to reconfigure the
processes’ environment, or try a variation of the desired FTES, in an attempt to coax
away configuration-specific faults and errors. If this still fails, the SM aborts the job, and
the FTM conveys the inability to perform the job back to the user.

If an ARMOR fails, once that failure has been detected the FTM can create a
replacement, which can then step in and more or less pick up where the previous
instance left off. Chameleon requires all ARMORs to remain available for as long as they
may be needed, even for the most pathological scenarios. For example, Execution
ARMORs should persist even after their process has finished, until the whole job has
concluded. Consider, for example, a standard TMR setup. If the Voter ARMOR fails
before the job has concluded, it must be replaced. But the replacement will need all the
output from the Execution ARMORs. The Execution ARMORs do not throw this
output away until they themselves are retired. Thus, they are able to resend it to the new
Voter, and the system still performs as desired.

If a daemon ARMOR fails, the FTM can immediately move effected ARMORs to a
different host, restarting them there as best it can. In the meantime, it can also try to re-
establish a working daemon ARMOR on the effected host. “Daemon failure” can
encompass the daemon actually failing, the host failing, or a communications error.
Thus, the FTM would not wait on the host to return; but it would make all attempts to
regain contact with or reinitialise the host.

If a SM fails, it can be restarted by the FTM, and the work done by the other ARMORs
should not be lost; the FTM will notify them of their new SM, and they will resume or
restart their communications with the SM as appropriate. Nonetheless, the loss of a SM
is relatively expensive, as for complex FTESs it can entail a lot of repetition, with the
latency and bandwidth use that entails.

If the primary FTM fails, the backup FTM should be able to replace it with relatively
little disruption. Since Chameleon tries at all times to maintain consistent state between
the primary and backup FTMs, the transition should be relatively quick. There may
nonetheless be delays as the backup FTM asserts control over all the ARMORs in the
system, and reverses any damage that may have been done by the previous FTM.

Wade Tregaskis • 02557793	
 CSE41RFS 2006

A review of the Chameleon Fault Tolerance System	
 16

Chameleon System Performance Evaluation
To evaluate the performance of Chameleon, we must first define the metrics that are
valued in a fault tolerant system. Ultimately, what we care about is dependability - the
assurance that the system will operate correctly. Dependability is a function of several
key metrics, such as reliability, availability, safety, security and responsiveness. It is also
useful to consider things such as fault coverage and efficiency.

R E L I A B I L I T Y
Reliability is measured as the probability of failure within a
given time frame. Working on the assumption that perfect reliability is impossible, this
ultimately boils down to how much users can trust the results of an application executed
within Chameleon. Given that there is a practical limit to how many faults can be
removed or prevent, to have high reliability the system needs to be sure that most
remaining faults are detected and corrected. “Most faults” means most of those which in
practice actually occur, not necessarily those which may occur; that becomes an issue of
fault coverage, discussed later.

Thus, what must be considered is what faults are most likely. This is highly dependent on
the exact environment Chameleon operates in, and what sorts of applications it manages.
Generally, the most common faults are abnormal termination and connectivity failures.
Chameleon handles these with ease, as has already been discussed and demonstrated.

Less likely, but still significant faults include whole hosts failure and process live-lock.
The former is easily handled by Chameleon, with some finite delay, while the latter is not
so clear. As noted, live-lock can be difficult to detect, but with the provision of special
APIs to applications for watchdog monitoring, the odds of a false negative can be
significantly reduced.

The least likely events are those that are largely random - such as an electrical glitch in a
CPU or memory, causing data corruption or an unexpected change of control flow.
These faults can be detected quite trivially using redundant execution, which Chameleon
employees widely.

In summary, the Chameleon system, while of course not perfect, does appear to cover the
vast majority of important cases, and as such can be considered successful in this regard.

A V A I L A B I L I T Y
Beyond just being reliable, a system also needs to be
available - that is, it must be operating correctly and ready for use. Given finite resources
with which to perform it’s tasks, Chameleon must use them wisely in order to ensure
they are available as necessary. Furthermore, it must be able to recover from faults
quickly.

Wade Tregaskis • 02557793	
 CSE41RFS 2006

A review of the Chameleon Fault Tolerance System	
 17

Because of Chameleon’s dynamic nature - being able to move ARMORs and applications
from host to host - and it’s high tolerance to localised failures - such as a host or
ARMOR failure - it is able to provide high availability, within those resource limits. In
particular, it has the capacity to do load distribution (this was noted, although not
implemented, in the paper).

Some of this availability is nonetheless contingent on the size of the Chameleon network.
A network with a hundred Chameleon hosts will obviously offer better general
availability than a network with just five.

The recovery time for many faults can be significant. A host becoming unavailable, for
example, can take 10 seconds or more to detect. There’s then a few seconds required to
restart the effected ARMORs on other hosts. All the while, for the user(s) who’s tasks
were on the unresponsive host, the system is effectively unavailable. Thus, in this respect
Chameleon leaves something to be desired.

S A F E T Y
A safe system is one which is either working correctly, or
which has detected a fault and avoided catastrophic failure. For all the faults that
Chameleon detects, it is safe - if it cannot mask or otherwise avoid the fault after some
effort, it will notify the user of the problem. It will not, for example, present the results
of a process which keeps producing invalid output. In this regard, it is safe. For faults
which it does not handle, it may not be safe. This then becomes an issue of fault
coverage, discussed later.

S E C U R I T Y
This encompasses not only privacy of data, but also it’s
authenticity & integrity, and the system’s general resistance to malicious behaviour. This
is one area in which Chameleon is extremely lacking. There are no mentions of
encryption in the paper, nor any notes on the huge danger presented by the practice of
compiling and executing arbitrary code on a host.

Additionally, the paper does not consider at all the possibility of malicious ARMORs in
the system, intentionally subverting the system. For example, a malicious Voter could
return aberrant results, instead of the majority consensus. Any of the Voter, Execution
and Fanout ARMORs could modify data at their discretion, with no recourse for
detection by the FTM and thus no way of informing the user of the violation.

There is mention of using CRCs and checksums, which provide some defence against
random faults, but do absolutely nothing for security.

A system that is secure against malicious behaviour is consequently highly secure against
random behaviour. Thus, Chameleon’s lack of security is a significant concern.

Wade Tregaskis • 02557793	
 CSE41RFS 2006

A review of the Chameleon Fault Tolerance System	
 18

R E S P O N S I V E N E S S
Chameleon, in the incarnation presented in the paper, is
not positioned as a real-time system, although the paper
does devote some space to discussing how it could be made into one. Fault tolerant real-
time systems are exceedingly difficult to create, because they rule out many of the
temporal redundancies that can otherwise be employed. Real time fault tolerant systems
typically employ spatial redundancy and active backups; Chameleon offers this
functionality, but not explicitly designed with time-critical usage in mind.

Nonetheless, responsiveness doesn’t require being hard real-time. In most cases, the
responsiveness that is important is how long it takes to complete a task, in wall time.
Chameleon appears to favour spatial redundancy for this reason - while it uses more
resources at a time, it provides more or less the same responsiveness as a single
execution, with the benefits of redundancy for fault detection and masking. Chameleon
also uses temporal redundancy, although only where it is unavoidable or where
responsiveness is not important.

The paper includes benchmarks of Chameleon’s responsiveness in the test network used
by the paper’s authors. They show that it takes in the order of one second to install an
Execution ARMOR, for example, which is insignificant compared to the typical task
duration. For faults leading to application crashes, Chameleon took on average just
under one second to respond to the failure. For host crashes, Chameleon takes a little
over 10 seconds - which is limited by the configurable timeout; 10 seconds in this case.

Once faults were detected, the recovery times were in the range of 1.5 to 2.5 seconds for
Execution, Daemon, Surrogate Manager and Voter ARMORs. Again, this is a relatively
small delay.

As such, Chameleon can be considered quite responsive. As noted, it’s flexibility permits
differing degrees of responsiveness as required, from indifferent to approaching soft real-
time. Additional modifications, such as more stringent resource control, could be added
to support hard real time applications.

F A U L T C O V E R A G E
As mentioned in the reliability section, fault coverage is
somewhat of an idealistic metric, but is nonetheless important. It refers to the range of
faults that can be handled by the system. It is impossible for any system to cater for
every possible fault, but it is certainly possible to cover all the important ones.

As has been detailed previously, Chameleon provides coverage for a wide range of faults,
ranging from hardware failure to software bugs. Some areas where it is not so strong,
however, are:

Wade Tregaskis • 02557793	
 CSE41RFS 2006

A review of the Chameleon Fault Tolerance System	
 19

• Faults in certain key ARMORs, such as the FTM, which can go undetected, or not be
detected in a timely fashion. Particularly relating to malicious behaviour.

• Environment & configuration faults. While Chameleon may attempt to use different
hosts and architectures, as available, upon failure of a system, it’s approach is somewhat
haphazard and does not systematically approach the problem of improper
configuration, or an incompatible environment.

Nonetheless, overall Chameleon’s fault coverage is quite reasonable, given it’s level of
operation. For finer-grained fault handling, such as errors deep within a given process,
the special Chameleon API can be utilised, although ultimately the resolution is limited.

E F F I C I E N C Y
Finally, one very important metric is efficiency. Chameleon
uses multiple hosts, if available, and may employ significant spatial and temporal
redundancy in the name of fault detection and masking. The big question is, does it do
so efficiently?

Ultimately, this is up to the users of the system. If they choose to make use of the
redundancy Chameleon can provide, then obviously efficiency will be impacted.
However, users are not required to do so. Indeed, if responsiveness is not a concern,
users can use only temporal, as-needed redundancy - in this way, only as many executions
are performed as are actually required, given the presence or absence of faults. The
Execution ARMOR provides this basic temporal redundancy automatically.

From another angle, how efficient is the inter-ARMOR communication and
management? Thanks to the manager hierarchy, with a single FTM (plus backup) and
some number of SMs, with only necessary communication between them, the network
overhead and processing latencies are minimal. This comes as a trade-off, of course, with
other attributes - such as the improved reliability multiple concurrent FTMs would
provide.

While the paper does not mention it explicitly, it is conceivable that ARMORs
themselves could be run redundantly. This reduces the efficiency of the system, but again
only if the user requires it. Unfortunately, the hierarchal nature of the system permeates
it thoroughly, which limits how truly fault tolerant it can be in itself.

Thus, in summary, while the system has variable efficiency, it’s adaptive nature ensures it
is always reasonably efficient for any given requirements. In particular, the approach of
Chameleon, with it’s strong hierarchy and limited internal redundancy, seems to favour
practicality and efficiency over reliability and availability. Whether this is a positive
favouring is subjective, based on the priorities and needs of particular users.

Wade Tregaskis • 02557793	
 CSE41RFS 2006

A review of the Chameleon Fault Tolerance System	
 20

Case study: Web service application
As an example of how Chameleon can be used in a real world system, consider a generic
online shop-front, for a small business. The components of this system are:

• Hardware - Consumer PCs and low-end servers, without dedicated fault tolerance in
terms of RAIDs, redundant or hot-swappable hardware, etc. Assume for this example a
dedicated T1 line for internet connectivity.

• Software - Generic *NAMP system; *nix (Linux, Darwin & MacOS X, in this case),
Apache, MySQL, PHP. Additionally, binary-only proprietary middleware for EFTPOS
transactions with the business’ bank. Consider the Apache & PHP front-end to be run
on one machine, the MySQL database on another, and the bank’s middleware on a
third.

Figure 6 - Example business network

Refer to figure 6. As noted, there are three servers in this environment plus one desktop
PC, used to manage the system.

The flow of data in this system is fairly simple - customers connect to the website, hosted
by Apache. The online storefront is implemented using PHP, which accesses the MySQL
database containing customer information, transaction records, inventory lists and
prices, etc. Lots of data is pulled from the database at regular intervals, as customers
browse through the store. Occasionally data is written to the database, when a customer
modifies their shopping cart, or checks out an order.

The bank middleware is invoked only for each sale. It is invoked via a special plug-in
module for PHP, which returns the success or failure of a given transaction. The PHP
store code then acts appropriately, e.g. commits the sale to the database, adjusts
inventories, and informs the customer of their successful purchase.

There are several different requirements for fault tolerance within this system. Consider
each part of the customer process:

1. Browsing the store. This involves many copies of the Apache process running
concurrently, each serving different customers. Each process runs PHP internally.

XXX

Wade Tregaskis • 02557793	
 CSE41RFS 2006

A review of the Chameleon Fault Tolerance System	
 21

Each customer has a database session, but multiple processes for the same customer
may be using the database at the same time. All database queries are read-only. The
Apache server is primarily I/O bound, waiting on the database and data from the
customer.

2. Adding items to the shopping cart. This is similar to the above task, except it
involves writing to the database.

3. Customer checks out. This involves a database read (for the contents of the
customer’s shopping cart), a call to the bank middleware to perform the EFT, and
then several writes back to the database if the EFT is successful.

For the general Apache use, the key is responsiveness and efficiency - there may be many
customers, each invoking multiple Apache processes at a time. As such, techniques such
as spatial redundancy are not an option.

Assuming the Chameleon implementation in use can intercept all I/O to a process, and
can handle a process forking appropriately (as Apache frequently does), the best FTES to
use is also the simplest - just an Execution ARMOR for each Apache process. If a
process fails, the Execution ARMOR will restart it with the same inputs. Thus, the
customer’s request will not be lost. There is, however, the possibility of multiple
database transactions as a result. For read-only transactions, this is not a significant
issue; only one of efficiency. If efficiency is really a big concern, an ARMOR (perhaps a
modified Execution ARMOR) could be implemented to cache database transactions for
reuse.

Host affinity is also an issue for Apache; customer requests will be destined for a
particular network address, so Chameleon is not able to move Apache processes to
another host unless it both a) moves every Apache process and b) can change the routing
so new requests go to the new host. This could be done with a custom ARMOR,
although it is no small feat to do properly, without race conditions and other nastiness.

When it comes to the database, reliability is essential, especially for writes to the
database. Thus, spatial redundancy with voting is a desirable FTES. Each database
process could be run using TMR, for example, with output only to be issued to Apache or
written to disk if there is a majority consensus. This is contingent on each MySQL
process producing predictable results for a given transaction, given identical inputs, but
this shouldn’t be a problem. If it is, a modified Voter ARMOR could be created which
understands the output and accepts differences between them in certain places (for
example, timestamps or randomly generated IDs).

The bank middleware is a special case. It is a proprietary binary blob, which cannot be
recompiled or modified, even if a logic (software) fault or error is discovered. In this
respect is also probably has forced affinity to whatever particular platform and OS it is
compiled for.

Wade Tregaskis • 02557793	
 CSE41RFS 2006

A review of the Chameleon Fault Tolerance System	
 22

Critically, it must not issue multiple EFTs for a single transaction; this would overcharge
the customer. A failure reported back to the customer is a better solution than risking
overcharging. Thus, temporal redundancy is not an option; if the middleware crashes,
Chameleon should not restart it or terminate the corresponding Apache process; the
Apache process should receive appropriate notification of failure and be permitted to
respond to the user and use the database as necessary. A note will also need to be made,
so that a human can contact the bank and verify whether the EFT occurred or not, and
finish the transaction as appropriate. All this may be difficult - the paper does not at any
point suggest Chameleon is designed for this kind of application-handled failure recovery.
Nonetheless, it could be done, with suitable modifications to the ARMORs involved.

Assume also that the bank middleware encrypts all it’s communication to the bank
servers. Consequently, for all intents and purposes no two executions of the middleware,
regardless of it’s input, will produce the same output. Consequently spatial redundancy
cannot be employed.

This more or less rules out Chameleon’s use for managing the middleware, in general.
Chameleon can certainly maintain an overall Execution ARMOR for the middleware,
which will relaunch it if a* middleware processes exit, and may of course monitor the
middleware’s host, but that is about it.

If the middleware could be modified to support interaction with a Checkpoint ARMOR,
then Chameleon would most certainly be useful, as duplicate EFT transactions could be
prevented. Unfortunately, as a proprietary binary blob the business cannot make any
changes of their own, and the odds of getting the bank to implement such measures, for a
single small business, are tiny at best.

This example shows how difficult it is to apply fault tolerance, with a generic system, to
as common an application as running a web server. The complex interaction of multiple
processes in even a small-scale system makes it very difficult to isolate stages to which
fault tolerance techniques can be applied. Certainly, Chameleon can be modified for the
specific needs of the system, but then the entire point of it as a generic, off-the-shelf
solution is lost.

Wade Tregaskis • 02557793	
 CSE41RFS 2006

A review of the Chameleon Fault Tolerance System	
 23

Future Work
This section is a collection of thoughts on what directions Chameleon needs to explore
in future, particularly in relation to it’s present deficiencies. Each suggestion is
independent, and they are presented in no particular order.

“ S E D Q U I S C U S T O D I E T I P S O S C U S T O D E S ? ”
“But who will guard the guards?” There is a distinct lack of self-application in
Chameleon. While ARMORs that crash can be detected and replaced pretty trivially,
and certain interactions with the FTM can reveal problems there, overall there is very
little self-management and self-application of fault tolerance techniques.

In particular, the strong hierarchal nature of Chameleon does not lend itself well to fault
tolerance. As even the authors of the paper acknowledged, the classic naive approach to
fault tolerance is distributed computing. Classic topics in this area include the Byzantine
Generals problem, distributed synchronisation - clocks & mutual exclusion, etc - and so
on. None of these concepts or problems are addressed in the paper.

For example, the FTM represents a very big critical point of failure. If the backup FTM
is not available, not working correctly, or simply not in sync with the primary FTM,
chaos can ensue. And when it comes to the decisions made by the FTM - such as how to
manage the network, what FTESs to use for new jobs, etc - there is no fault tolerance at
all.

It seems it would be a very good idea to evaluate more distributed algorithms for
managing the Chameleon network. Given that every host in the Chameleon network has
a daemon ARMOR, this would seem a natural place to implement distributed algorithms.
It may be that the FTM is not needed at all. SMs still serve a useful purpose as overseers
of individual jobs, but also need a look-in as regards their own fault tolerance.

L I V E - L O C K
Another approach to detecting live-lock is to provide an API for applications to use to
indicate periodically that they are still running. This style of live-lock detection, known
as a watchdog timer, is commonly used in microcontrollers and similar devices, and has
been found empirically to work quite well. It does not guarantee detection - a process
may still be live-locked even if it does regularly check-in with the Watchdog ARMOR -
but it increases the probability of detection significantly. Unfortunately, it does require
applications to be written specifically for Chameleon.

As noted, reliable live-lock detection seems to be the biggest reliability problem
Chameleon currently has. While it’s still an open problem to solve, it seems the current
implementation stops short of what could be achieved.

Wade Tregaskis • 02557793	
 CSE41RFS 2006

A review of the Chameleon Fault Tolerance System	
 24

Another possible approach could be to trace the processes’ execution, if it seems to be
running for too long. If it can be proved that the process is in an infinite loop, for
example, it can be immediately terminated.

S E C U R I T Y
This is, as noted, a major problem with Chameleon - it has no concern for security at all.
Here is a system which allows it’s users to run arbitrary code on any host in the system.
Even if the FTM is protected from abuse, the lack of encryption between ARMORs, and
appropriate signing of executable data, leaves the system open for all kinds of attacks.

It seems the system really needs to adopt a solid PKI (Public-Key Infrastructure). All
communications between daemons should be encrypted. Daemons should also offer per-
host protection; that is, even if a host is part of the Chameleon network, it can be
configured to only allow installation of new ARMORs by certain users (or not at all).

Additionally, all Chameleon code should be signed to prevent tampering in transit. This
limits the mutability of the code, of course, which is a trade off that must be evaluated in
context.

On a different line off criticism, but again security related, much of Chameleon’s more
advanced functionality - monitoring I/O, for example - implies the need for at least super-
user privileges, and probably custom kernel extensions on host systems. These are
privileges that are not lightly granted, and will definitely hinder adoption of the system.

A third independent point on security - what resilience is there to malicious behaviour?
The paper uses just one example; that if the FTM deletes a bunch of records, when some
other ARMOR later tells it that one of those records should really be deleted, the FTM
will say it doesn’t have that record, and the ARMOR whines to the backup FTM. But
this is a condescending example; a malicious FTM wouldn’t acknowledge a failure like
this, of course. How then does the system detect malicious ARMORs? The Voter
ARMOR in particular is a single critical point of failure in this regard. The Byzantine
Generals problem indicates that a truly distributed system can guarantee validity of a
voting network for up to a certain number of malicious members (less than one third).
This would certainly be better than the current implementation, which cannot tolerate a
single malicious voter.

E L E C T I N G T H E A C T I V E F T M
A problem with the manager hierarchy as it stands is that while the FTM claims to have
top spot, the backup FTM has all it’s power plus extra - it can ki* any existing FTM. This
posses a rather substantial problem - any failure of the backup FTM can potentially take
down a perfectly good primary FTM. It also provides an attractive point of entry for
malicious ARMORs.

Wade Tregaskis • 02557793	
 CSE41RFS 2006

A review of the Chameleon Fault Tolerance System	
 25

Again, this comes back to the need for a more distributed solution. Or, a solution which
utilises signed code and related PKI to ensure only authorised hosts can operate FTMs.

H E T E R O G E N E O U S C O M P U T I N G
While Chameleon takes special effort to be platform independent, and indeed can
benefit from a heterogeneous network by utilising the differences to eliminate
environment-specific faults, it also raises questions about redundant execution. For
example, the FPUs on the PPC and IA-32 architectures disagree on certain things, such
as rounding, precision and so forth. These minor differences can quickly compound over
the course of a long computation, to produce substantially different results at the end.
Aside from the very real debate as to which one is correct anyway, how can a Voter
ARMOR handle this? The paper does not address this issue at all. Another related
problem is endianness; similar story.

It seems like Chameleon needs to be more conscious of potential architectural
differences, and may need to be capable of running redundant copies of a process on
similar architectures.

S I N G L E P O I N T O F F A I L U R E
If the daemon is the gateway to the network, for local ARMORs, what happens if it fails?
Why is it necessary, in a fully networked environment, to only communicate via this
daemon? It may have been the original intention to abstract away the networked
communication implementation from each individual ARMOR, on the assumption that
different users might wish to utilise different network protocols. But in reality there is
one dominant protocol - IP, with it’s two flavours TCP and UDP - and that is unlikely to
change. Thus, there seems little reason to force a single point of failure in each host’s
daemon.

It would appear to be a superior approach to have each ARMOR communicate with
other ARMORs directly, as necessary. The daemon could still remain, as a general
monitor of it’s host and of course a means of installing new ARMORs on the host, but
it’s role as the network gateway is unnecessary.

F A N O U T A R M O R
The principle by which the Fanout ARMOR operates, and for why it exists, is an
excellent one - it is critical that redundant copies of a process receive exactly the same
inputs. However, whether an entirely separate ARMOR is necessary for this remains to
be seen. Once proper security is implemented, with data signing and encryption, it is
relatively trivial to implement a distributed transaction system like the Fanout ARMOR
does, only it could be done instead as part of the Execution ARMOR (or indeed, any
ARMOR).

Wade Tregaskis • 02557793	
 CSE41RFS 2006

A review of the Chameleon Fault Tolerance System	
 26

Ultimately, the need for a distinct Fanout ARMOR can be debated, but it seems it’s
presence in the paper’s implementation is largely to workaround larger issues, such as
missing encryption and signing.

A T O M I C I T Y I N S U R R O G A T E M A N A G E R A R M O R S
There are some concerns about the nature of certain operations that should be atomic.
For example, the SM is responsible for terminating it’s ARMORs, once it’s task is
complete, and then notifying the FTM that those ARMORs have been retired. But
consider what happens if the SM crashes after terminating it’s managed ARMORs, but
before informing the FTM. The FTM will still consider those ARMORs alive, as will
other SMs. Eventually one will try to use one, and will be unable to. This would be okay,
if it were not for the generally suspicious nature of many ARMORs - they may trigger the
backup FTMs “fault detection”, when it sees that the FTMs picture of the network does
not match reality, and thus may erroneously instigate replacement of the primary FTM.

If instead the SM informs the FTM before retiring the ARMORs, but then fails to, the
problem is reversed; now there are idle ARMORs sitting around which will never be
used.

It seems a simple solution is to have the FTM be the only ARMOR in the system which
can retire other ARMORs; thus when a SM finishes, it informs the FTM of the fact, and
suggests which ARMORs should be shutdown. The FTM can then, at it’s own discretion,
retire the unneeded ARMORs.

Wade Tregaskis • 02557793	
 CSE41RFS 2006

A review of the Chameleon Fault Tolerance System	
 27

Conclusion
At first glance the Chameleon system looked like typical academia; yet another idealistic
system developed without real world considerations. Upon closer inspection, however, it
turns out to be quite a reasonable system. That the authors presented it alongside results
from a working implementation leads notable credence to it’s authenticity and
functionality.

And while this document is highly critical of the system in places, overall Chameleon is
rather elegant and promising. It’s modular design, focusing on code and instance reuse, is
simple yet powerful. It is well designed insofar as it only concerns itself with the handful
of faults and errors which together lead to the vast majority of failures, and protects again
those failures quite effectively. It doesn’t try to be everything to everyone; just all it
needs to be for most users.

Unfortunately, little more has been heard on Chameleon since the original paper, in 1999;
half a dozen other citations in other papers, and little else. The implementation has
certainly not taken the distributed computing, fault tolerant, or real time worlds by
storm. To be fair, it has some tough competition in all those areas.

On a personal note, I regret not making time to actually implement the system. While
some more advanced functionality (e.g. I/O monitoring) is not trivial to implement, the
core of the system is actually quite simple. And even just a basic implementation - the
FTM, SM, Execution and Voter ARMORs - would be quite enough to gain a large
portion of Chameleon’s functionality.

Perhaps, sometime down the track, I will get a chance to investigate Chameleon further.

Wade Tregaskis • 02557793	
 CSE41RFS 2006

A review of the Chameleon Fault Tolerance System	
 28

References
[1]	
 Zbigniew T. Kalbarczyk, Ravishankar K. Iyer, Saurabh Bagchi, Keith Whisnant,

“Chameleon: A Software Infrastructure for Adaptive Fault Tolerance”, IEEE
Transactions on Para*el and Distributed Systems, volume 10, number 6, pages 560-579,
June 1999.

[2]	
 K. P. Birman and R. van Renesse, Reliable Distributed Computing with the Isis Toolkit,
Los Alamitos, California: IEEE CS Press, 1994.

[3]	
 J. H. Wensley, “SIFT Software Implemented Fault Tolerance”, Proc. Fa* Joint
Computer Conference, AFIPS, volume 41, pages 243-253, 1972.

[4]	
 B. Soh, CSE41RFS Lecture Notes, La Trobe University, 2006.

Wade Tregaskis • 02557793	
 CSE41RFS 2006

A review of the Chameleon Fault Tolerance System	
 29

