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Abstract 
This thesis reports on the work done by Robert Ross & Wade Tregaskis for their 
fourth year engineering project, as part of their Computer Science (Honours) / 
Electronic Engineering double degrees.  The project aimed to develop an autonomous 
UAV, using a model plane, microcontroller, and appropriate sensors. 
 
The ATmega2561, an 8-bit RISC microcontroller from the Atmel AVR family [1], 
was chosen to power this system.  A custom PCB was designed to incorporate the 
various sensors (GPS receiver, magnetometer, accelerometers, etc) and other systems 
(including a Bluetooth transceiver).  Software for the system was written in C, 
compiled with ImageCraft C Compiler v7 for AVRs [2], and programmed into the 
AVR via Atmel's AVR Studio 4 using AVRISP hardware.  
 
The completed system was mounted inside an "ElectraFun XP" model airplane, 
manufactured by J Perkins Distribution Ltd and available in Australia from Model 
Engines Australia Pty Ltd.  Our system interfaced with the onboard servos and 
wireless control receiver, and was successfully flown numerous times.  Autopilot was 
engaged during test flights and seen to be at least partly functional. 
 
Flight data was recorded aboard the plane onto a MultiMedia Card (MMC) or Secure 
Digital Card (SDC), including the plane’s actual flight path, sensor measurements, 
and other information. 
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Glossary 
AMSL Above Mean Sea Level, used to denote the  reference point when 

talking about elevation or altitude, as the average sea level.  What 
the average sea level is at any particular point is often 
contentious, but typically the GPS opinion is considered 
authoritative. 

Bitbanging A method of replacing dedicated communications hardware with 
a software implementation, typically involving manipulation of 
individual bits or pins. 

Bytecode A intermediate compiled form of software, which is interpreted 
or translated to machine code at runtime. 

CCITT                      International Telegraph and Telephone  Consultative Committee 
(CCITT, from the French name "Comité consultatif international 
téléphonique et télégraphique".  Renamed in 1992 to the ITU-T. 

CRC                         Cyclic Redundancy Check (also, Cyclic  Redundancy Code).  A 
means of computing a special code from data, such that it is very 
unlikely that a random number and combination of errors will 
modify the data in such a way that the code will not change.  
Used to reasonably assure correct data transfer. 

GLU                         OpenGL Utility Library, a collection of  miscellaneous 
functionality for working with OpenGL. 

Endianness               The ordering of bytes within a multi-byte structure.  Little-endian 
systems place bytes in increasing order of significance as the 
address goes higher, while big-endian systems go the other way. 

GPS                         Global Positioning System. 
ICC                          ImageCraft C Compiler. 
ITU                          International Telecommunication Union, a standardisation body 

for international telecommunications protocols and methods. 
ITU-T                       ITU Telecommunication Standardization Sector, a branch of the 

ITU that deals specifically with telecommunication (as opposed 
to radio communication). 

LiPO                        Lithium Polymer, a common type of high-energy-density 
rechargeable battery. 

MAC                        Media Access Control, the layer of a communications stack 
which manages and possibly arbitrates access to the physical 
media. 

MEMS                     MicroElectroMechanical Systems.  A somewhat ambiguous name 
describing electromechanical systems that are very small, down 
to nanometre scales. 

MMC                       MultiMedia Card. 
NiMH                      Nickel Metal Hydride, a common type of rechargeable battery. 
NMEA                     National Marine Electronics Association.  Typically associated 

with the GPS, where they defined the most common receiver 
output format. 

OpenGL                   Open Graphics Library, the standard library and API for writing 
3D software in the computer industry. 

PHY                         An abbreviation of “Physical Layer” in reference to 
communications systems, referring to the layer that manages the 
actual hardware, typically involving conversion of an arbitrary 
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digital bitstream to and from the analogue communication 
method. 

PID                          Proportional, Integral, Differential.  A type of control algorithm 
that utilises feedback to respond relative to the current error 
magnitude (proportional), rate of change (differential) and long-
term average error (integral). 

Refactoring               The process of reorganising (redesigning in place) a system 
without adding additional functionality, in order to improve one 
or more aspects of it (e.g. maintainability). 

RS-232                     A very commonly used low-speed interface for connecting two 
electronic devices together.  Also known generically as “serial”. 

SD                            Secure Digital, a type of Flash memory  card. 
SDC                         Secure Digital Card, a type of removable Flash memory. 
SPI                           Serial Peripheral Interface. 
PWM                       Pulse Width Modulation. 
UART                      Universal Asynchronous Receiver/Transmitter, a device for 

interfacing a communications method (e.g.  RS-232) to a 
microcontroller or similar system. 

UAV                        Unmanned Aerial Vehicle. 
USB                         Universal Serial Bus, a high-speed serial bus interface designed 

for use by microcomputers, and more recently seeing use in 
smaller electronic systems.  Typically a replacement for RS-232 
and similar serial interfaces. 

Xmodem                  A file transfer protocol, very popular in the late 70’s and early 
80’s, before being superseded by the Zmodem protocol, an 
evolutionary upgrade. 
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1. Introduction 
UAVs (Unmanned Aerial Vehicles) are, by common definition, re-usable, powered, 
guided aircraft which do not carry people[3].  Traditionally these aircraft have been 
controlled in real time from a remote location via a radio link[3]; hence the 
synonymous use of the term "remote-controlled aircraft".  Given this, one could argue 
they are still not really unmanned; the need for human piloting (albeit remotely) 
persists, negating their benefits in many scenarios. 
 
In recent times there has been growing interest and research into autonomous UAVs, 
where control systems onboard the aircraft aid - or entirely subsume - the role of the 
human pilot[3, 4].  The intention in creating autonomous UAVs is to eventually 
obviate the need for direct human supervision.  Onboard autonomous control systems 
provide increased responsiveness and can operate in dangerous environments, over 
larger distances, and without limits imposed by human limitations (such as 
fatigue)[4]. 
 
The purpose of this project was to create an inexpensive autonomous UAV using 
commercial off the shelf components: a hobbyist model plane, a microcontroller, a 
GPS receiver, a magnetometer, accelerometers and other sensors.  It was posited that, 
using these primary sensors, the microcontroller onboard the aircraft should be able to 
pilot the aircraft; reducing human input to mission planning, takeoff and landing. 
 
During operation, the UAV records data from various sensors, ranging from flight 
avionics to arbitrary payloads such as temperature sensors, cameras, etc.  This data is 
stored onboard in non-volatile memory, for transfer to a PC once the plane lands. 
 
UAVs have traditionally been used primarily and extensively by the military, and that 
use will only increasing in future, both in magnitude and scope.  Additionally, as 
UAV technology becomes more widely available and less costly, commercial 
applications are increasingly viable.  While the commercial market is small, it has 
fantastic growth potential.  The world UAV market is widely predicted to exceed 
US$5 billion annually within the next five years[4]. 
 
Although the fundamental concept behind this project - autonomous UAVs - has 
already been implemented by various manufacturers, to date these have been 
primarily high-end, military-orientated designs.  In addition to exploring the low-end 
of the UAV design realm, this project required research in a range of fields including 
real-time control systems, fault tolerant design, navigational vectoring, 
miniaturisation and weight reduction. 

1.1 Project Objectives 
The direction and aims of the project took some time to settle upon.  Initial 
suggestions included an airborne laser tag system, an automatic landing system, real-
time visual object detection and ranging, and so forth.  As these ideas were researched 
and evaluated, expectations were tempered somewhat, with some of the more 
advanced areas such as image recognition rejected on the basis of time and budgetary 
constraints. 
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Eventually, after much research and discussion with our supervisors, the formal 
objectives were specified, in three tiers.  The primary objectives are the fundamental 
goals set to be achieved, which were expected to be completed to a satisfactory level.  
Secondary objectives were defined as extensions and enhancements on the primary 
objectives, which are desirable to explore but not critical to the success of the project.  
Tertiary objectives were defined to cover related project ideas that may have been 
researched as part of the project, but which were not planned for implementation due 
to time, budgetary and technical constraints.  They were primarily indicators of where 
it was anticipated future work might be conducted. 
 
Primary Objectives 
- Outfit a model aircraft with a navigation and control system consisting of a GPS 

receiver, a magnetometer, accelerometers and an AVR microcontroller. 
- Write software for the microcontroller to sample each of the sensors and control 

the aircraft according to a pre-determined flight plan.  (proviso: Aircraft will be 
launched and landed under manual control) 

- Write computer software to develop a flight plan for the UAV to follow, with a 
communications link to facilitate transfer of the flight plan to the UAV. 

- Support onboard recording of all flight data (e.g. GPS co-ordinates, 
magnetometer readings, etc) onto a MMC/SDC.  

- Provide an in-flight wireless simplex communication channel to transmit data 
from the UAV back to a ground station (i.e. PC). 

- Provide a control system to manually switch between autonomous control and 
human control. 

 
Secondary Objectives 
- Addition of onboard sensors, with the sampled results stored on the onboard 

storage.  Types of sensors to be investigated include battery monitors, 
temperature sensors and pressure sensors.  

- Install an onboard wireless video camera to provide proof-of-concept video 
images of the visual data acquisition capabilities of the UAV. 

- Implement Error Correcting Codes (ECC) for the wireless PC link transmission 
to ensure signal quality and attempt to recover corrupted data. 

- Implement a cyclic redundancy check (CRC) for the wireless PC link to detect 
data corruption. 

- Implement a failsafe autonomous control system, whereby if remote control is 
out of range the UAV will return to previous position where controller was in 
range, and progressively search for a signal. 

 
Tertiary Objectives 
- Implement a visual landing system using a small camera and edge detection 

algorithms, to allow the aircraft to autonomously land on a well defined runway.  
- Implement a collision detection system based on ultrasonic or laser 

measurements to detect the presence of upcoming objects and avoid them. 
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1.2 Team member responsibilities 
While the work of both team members overlapped in many cases, sections of the 
project were assigned to one or the other as their primary responsibility, as shown. 
 
Robert Ross Wade Tregaskis 
- Flight control & navigation software - Flight planning software 
- Sensors - Bluetooth 
- Piloting - Sensors 
- Hardware design & assembly - MMC/SDC data logging 
- Hardware Testing - Optimisation & testing 

 

1.3 Organisation 
The organisation of this thesis as is follows: 
 
Section 2 covers the research conducted at the start of the project.  It begins with a 
brief lesson on basic flight theory, and then looks at the physical and functional 
requirements of the system.  Lastly, a brief summary of the commercial interest and 
applications is included. 
 
Section 3 presents the design of the key elements of the project, in particular the 
avionics hardware and the microcontroller software, as well as the flight planning 
software. 
 
Section 4 explains the actual implementation, including problems encountered.   It 
covers the three key areas of the previous section, as well as a discussion on the 
airframe and budgetary expenses. 
 
Section 5 presents the results of our labour, covering the flight data recorded, 
autopilot test results and the data logging system (both Bluetooth and the onboard 
storage).  
 
Section 6 discusses the results and the work of the project, including the perspectives 
and opinions of the authors.  Notably, both technical achievements and shortcomings 
are presented, leading into the concluding remarks and future work found in Section 
7. 
 
Following the references in Section 8, several appendices are attached, providing 
hardware schematics, a listing of the attached CD contents, some sample flight log 
data and software implementation details.  
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2. Research 
After early consultation with John Devlin the project objectives, as listed in Section 
1.1, were settled upon.  These objectives defined the requirements, and determined the 
areas that needed to be researched for the project.  In order to meet some of the 
grander aims, such as autonomous flight, an understanding of fundamental aircraft 
motion and dynamics was necessary. 
 

2.1 Flight Theory 
During flight four forces (shown in Figure 1) are constantly acting upon the aircraft: 
lift, weight, thrust and drag[5].  Lift and weight are opposing forces, with lift being a 
force perpendicular to the flow of air over the aircraft wings (generated by differential 
pressures at different points on the wing), and weight being the downward force due 
to gravity[6, 7].  Thrust and drag are another pair of opposing forces, where thrust is a 
forward directed force created by the motion of the aircraft’s propellers (or 
turbines/rockets) and drag is the aerodynamic force resisting the forward motion of 
the aircraft[6-8].  
 

 
Figure 1: Forces acting on the aircraft [7] 

2.1.1 Planes of motion 
The flight path of fixed wing aircraft is commonly resolved into three planes of 
motion; yaw, pitch and roll.  Each of these planes of motion, as shown in Figure 2, 
operates along an orthogonal axis and is primarily controlled through a particular 
control surface[7, 8]. 
 

• Yaw describes the movement of the aircraft about the normal axis, which 
refers to the pivoting of the aircraft as modelled on a flat surface.  

• Pitch refers to the movement of the aircraft around the lateral (or transverse) 
axis.  The lateral axis is parallel to the wings, thus the pitch is used to describe 
the angle of the nose of the aircraft (angle of attack) with respect to centre of 
gravity. 

• The roll (or bank) motion of the aircraft describes movement around the 
longitudinal axis (an axis parallel to the fuselage of the aircraft).  An aircraft 
rolling can be characteristically observed with the wings of the aircraft 
alternately rising and dipping.  
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Figure 2: Planes of motion [7] 

2.1.2 Aircraft Controls 
Fixed wing aircraft are generally manoeuvred through use of three independent 
control surfaces.  Each of these controls has an initial effect on one of the motions 
described previously, as well as a different secondary effect if the control surface 
settings are maintained[8].  In addition to these primary controls, several ancillary 
controls such as trims, flaps and throttle are also used.  For unmanned aircraft the 
most commonly used of these ancillary controls is throttle. 
 

 
Figure 3: Plane Structure [7] 

 
• The level of throttle (power to the engine) has both primary and secondary 

effects, akin to the main primary controls as discussed below.  The primary 
effect of the throttle control is regulating the motor speed which relates to the 
thrust of the aircraft.  The secondary effects are in pitch (increased throttle will 
cause the nose to pitch upward), a yawing affect (increased throttle will tend to 
make the plane yaw left), and a change in altitude (more throttle results in 
higher airspeed which increases lift).  

• The elevator is a horizontal control surface positioned on the trailing edge of 
the horizontal stabiliser of the aircraft (which is normally found on the tail).  
The primary effect of the elevator is to change the pitch, where down elevator 
results in a decrease in pitch and up elevator results in an increase in pitch.  
The secondary effect of the elevator is to change the airspeed, which increases 
as the nose is pitched down and decreases as the nose is pitched up.  

• Ailerons are horizontal control surfaces mounted on the wings of the aircraft 
that operate in an equal and opposite direction on each wing (one aileron will 
go up while the other goes down).  The initial effect of the ailerons is to 
change the roll of the aircraft, with a secondary effect of causing the aircraft to 
yaw.   

• The rudder is a vertical control surface normally found on the tail.  The rudder 
has a primary effect of causing the aircraft to yaw, with a secondary effect of 
causing the aircraft to roll.  The plane being used for this project only has 
throttle, rudder and elevator controls, so to cause the plane to roll; the 
secondary effect of the rudder is utilized.  
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2.1.3 Flight Manoeuvres 
During basic flight training pilots are taught a series of manoeuvres which provide a 
basic skill set for flying powered aircraft[8].  Autonomous UAVs similarly need to 
understand and be able to perform these manoeuvres.  Typically these manoeuvres 
include [8-10]: 
 

• Takeoff: During takeoff, the aircraft needs to quickly gain momentum to 
ensure that sufficient lift is available to climb.  Small UAVs are typically hand 
launched by giving them a gentle throw whilst applying full throttle.  During 
this takeoff phase, the rudder/ailerons are used to ensure the plane doesn’t 
bank overtly (as this reduces lift) and up elevator is gently applied to ease the 
aircraft into a gentle climb.  Typically takeoff is performed into wind, to 
ensure maximum airflow over the wings – generating maximum lift, and 
increasing stability.  

• Landing: UAVs are normally landed into wind, to provide maximum stability 
at low groundspeed.  A typical landing begins by flying several around the 
landing area to gradually reduce altitude.  The landing itself involves slowly 
decreasing altitude from a few meters above the ground, whilst throttling back 
power and stabilising the aircraft using the rudder.  

• Straight and Level Flight: Straight and level flight describes flight when all the 
forces acting on the aircraft are balanced (thrust, drag, weight and lift).  In this 
circumstance the aircraft will maintain a constant altitude, velocity and 
bearing.  The main flight controls are used to maintain straight and level flight, 
and the throttle is adjusted to balance the thrust force with the drag force.  

• Turning: Typically the ailerons are the primary control used to turn fixed wing 
aircraft, but in the case of small UAVs lacking ailerons, the secondary effect 
of the rudder (banking) is used.  To turn the aircraft the rudder is used to bank 
the aircraft, which will cause the aircraft to turn.  To complete the turn the 
rudder is moved in the opposite direction to return the plane to level. 

• Ascending/Descending: The elevator is the key control involved in ascending 
and descending, but it doesn’t operate in isolation.  Specifically the throttle is 
important, as insufficient thrust when attempting ascent will result in a stall, 
and excessive thrust when descending may result in an undesirably fast rate of 
descent.  Thus, typically when ascending the throttle would be increased, and 
the elevator would be gently pulled up.  When descending the throttle may be 
lowered as the elevator is gently pulled down.  

• Stalling: A stall is defined as the condition where the angle of attack (pitch of 
nose) exceeds the critical angle, resulting in a rapid reduction of lift.  The 
critical angle of attack is the angle where the coefficient of lift is maximised, 
and any further increase in the angle of attack will result in a rapid reduction 
of lift.  For light fixed wing aircraft, the critical angle of attack is typically at 
least 16 degrees.  Several factors can influence the angle of attack required to 
stall, including weight (which acts in opposition to lift), airspeed (as higher 
airspeed increases lift) and the amount of bank (as overall lift is significantly 
reduced during banking).  

 

2.2 UAV Requirements 
While there are numerous subtle requirements for building an autonomous UAV, the 
most important ones are detailed in this subsection.  Many of the requirements 
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evolved over the course of the project, due to new information and changing 
priorities; only the final requirements are presented here. 

2.2.1 Navigation 
The UAV needs to know where it is, where it should be, and how to get there.  
Luckily this is, for the most part, very simple.  The position of the UAV can be 
provided by a GPS receiver, waypoints can be specified in configuration files, and 
there are thankfully very few obstructions at typical operating elevations. 
 
Initial research confirmed that modern GPS receivers are capable of achieving 
resolutions less than tens of metres, sufficient for our purposes, and with a typical 
update rate of 1Hz are sufficient (although not ideal) for navigation. 
 
The UAV's flight path can be specified as a sequential list of co-ordinates in 3D space 
(latitude, longitude and elevation).  There are only two navigational elements - 
bearing and altitude - to be computed and managed, which is easy to do, even on a 
minimal microcontroller. 
 
Additional methods of navigating, such as visual recognition of landmarks, were 
investigated.  The requirements for image recognition, even if only simple, are 
substantial - both in terms of necessary hardware as well as algorithmic complexity.  
Such systems were briefly researched, but not developed for the project. 

2.2.2 Flight Control 
Flight control, as opposed to navigation, is the management of the control surfaces of 
the plane (and the motor) to perform flight manoeuvres (as covered in Section 2.1).  It 
is concerned particularly with the stability of the plane - especially for straight and 
level flight - and responding to the needs of the navigation system. 
 
On the ElectraFun XP the control surfaces are driven by electronic servos.  Electronic 
servos consist of a DC motor mechanically coupled to a potentiometer to provide a 
feedback path.  A pulse-width modulated (PWM) signal is used to drive the servo.  
The PWM signal has a period of 20ms and a ‘high’ pulse time of between 1.25ms and 
1.75ms – which is used to control the position of the servo motor arm[11-14].  The 
servos used on the ElectraFun XP have a range of motion of approximately 180 
degrees. 
 
For the model airplane chosen, the motor speed controller utilises a servo-compatible 
interface, where longer pulses correspond to higher throttle. 
 
As a sidenote, acrobatic flight - where the plane may perform a roll or loop - is far 
more difficult to manage than basic flight, and was never intended to be part of the 
project.  Some allowances were made, however, for cases such as an accidental roll-
over, although these were never fully implemented, nor tested. 

Orientation 

In order to meet the control requirements, the plane needs several sensors.  The GPS 
receiver is not useful for basic flight control, as it relates only to the actual position of 
the aircraft, not its orientation, pitch, immediate change in bearing, etc.  For these, 
other sensors are required; an ideal sensor for this purpose is a gyroscope.  As 
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summarised by the Wikipedia article for Gyroscopes, "A gyroscope is a device for 
measuring or maintaining orientation, based on the principle of conservation of 
angular momentum" [15]. 
 
Typically a two-axis gyroscope would be used, oriented to measure pitch (or attitude) 
and roll (or bank).  A third axis (for yaw) is not strictly necessary, but could be useful 
if drift factors can be added as inputs to the control algorithms.  Commercial aircraft 
avionics typically augment gyroscopes with accelerometers to create a complete 
Inertial Navigation System[16]. 
 
Unfortunately, research revealed many potential problems with use of a gyroscope.  
First and foremost, they are expensive - upwards of a hundred dollars for quality 
components.  They are also fairly large, especially mechanical gyroscopes, and can 
have substantial power requirements (hundreds of mW).  Given these problems, it was 
decided not to use a gyroscope, and instead attempt to suffice with only 
accelerometers.  Accelerometers measure acceleration (including gravity), which is 
useful in many respects, but there are many sources of acceleration - gravity, change 
in speed and rotation.  It was foreseen early on that decoupling all these from each 
other would be difficult, if possible at all.  We optimistically hoped we could 
overcome the limitations in software. 

Elevation 

While the GPS receiver can provide an approximate elevation once a second, the GPS 
is infamous for poor elevation accuracy, and John Devlin expressed strong 
reservations about its suitability.  Since knowledge and control of elevation is rather 
critical in an aircraft, alternative means of measuring elevation were explored. 
 
Commercial aircraft use a variety of systems for determining their elevation above 
ground level and mean sea level.  Pressure is considered a fairly reliable determinant, 
particularly for relative elevation, although its resolution is very limited - typically it 
is used on scales of hundreds of metres, whereas for a small UAV a resolution of at 
least tens of metres is highly desirable. 
 
A common method used around airfields is a ground based system of radio beacons, 
using triangulation to determine the plane's relative position in 3D space.  Such 
systems can be extremely accurate within their field of operation, but are unsuitable 
for UAVs because the field of operation is potentially huge, and may include irregular 
terrain which is not suitable for such systems. 
 
Another common method used is some form of radar or ultrasonic range-finder.  Such 
systems typically provide accurate, position-independent determination of elevation 
above ground level.  Their behaviour is, however, influenced by the reflecting surface 
below the aircraft, which is of some concern for a general use UAV.  In particular, 
physical obstructions such as foliage may not be dense enough or have the ideal 
geometry for such systems, and may not appear, or appear and disappear sporadically.  
And beyond all this, there are mechanical issues with fitting any line of sight system 
such as these - these sensors must always be orientated vertically downwards, ideally 
across any possible range of rotation of the plane on any axis.  This poses a significant 
design challenge.  A compromise can be made, by which the system has a fixed 
orientation relative to the plane, and the software is aware of and accounts for the fact 
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that the plane will not always be correctly orientated to produce a useful reading.  
This represents a fairly significant amount of work, and it limits the freedom of the 
aircraft, placing further restrictions on the flight control. 
 
It seemed unlikely that reliable determination of elevation could be achieved, beyond 
what is provided by the GPS.  It was any easy decision to include a pressure sensor, 
given their availability and minimal cost, but it was never expected that this sensor 
would be useful for flight control. 

Speed 

The groundspeed can be determined with reasonable accuracy using the GPS, 
provided it is above a certain threshold - approximately 16km/h, as a rule of thumb.  It 
was not known what the typical cruise speed of the chosen aircraft was prior to 
building the system, so it was uncertain how useful the GPS would be for this 
purpose.  Unfortunately, there are limited other means for accurately determining 
groundspeed.  Typically some kind of stationary ground reference is required, 
whether by visual recognition, radio triangulation or radar.  All these things, as noted 
previously, were not available to use. 
 
This is not necessarily a problem, even if the GPS turns out to be insufficient, because 
it is the airspeed which is most important in terms of flight control.  The airspeed can 
be reliably measured in a variety of ways, the most common of which is some kind of 
Pitot-static sensor - that is, a differential pressure sensor where one chamber is 
orientated in the direction of flight, and the other is sealed at a known pressure (e.g. 1 
atmosphere).  There are some practical issues with the use of Pitot-static sensors, in 
particular the fact that they have an alignment and so while using just one fixed 
parallel to the aircraft body is most often sufficient, it does not work reliably if there 
is significant cross-wind producing lateral movement of the aircraft, or in the case of a 
stall that results in significant downwards motion.  Using multiple sensors aligned to 
different axes can resolve this, but becomes quite laborious, and expensive. 
 
Ultimately it was felt that an onboard airspeed indicator was not strictly necessary, 
under the restriction that the plane be pre-dominantly operated at full throttle under 
autopilot, and that it not be operated during excessively windy conditions.  The latter 
is a mechanical limitation of the plane itself, in any case. 

2.2.3 Data Logging 
During the research phase of the project, and prior, several tests were conducted 
regarding equipping the plane with cameras, both still and video.  These yielded 
promising results, proving at the least the suitability of model planes for such tasks.  
While ultimately it was not a primary aim of the project to include image acquisition, 
it was a consideration when it came to the data logging capabilities of the system.  In 
particular, it encouraged the use of a high-capacity logging facility.  Incidentally, 
testing the use of a wireless transmitter for the video camera revealed substantial 
problems with interference, which emphasised the importance of onboard data 
logging, given that a wireless link may not be reliable, or available at all (i.e. in true 
UAV operation over large distances). 
 
The initial inclination was to use some kind of non-volatile memory.  This could be 
fixed on the PCB (e.g. an EEPROM chip), an external device (e.g. connected via RS-
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232, SPI or similar), or a removable device (e.g. a CompactFlash card).  Additionally, 
hard drives were considered briefly.  However, hard drives are relatively heavy, and 
quite expensive.  They are also mechanical devices, with moving parts, which are not 
ideal for a potentially unstable platform such as a UAV.  In particular, reliable 
onboard logging is most critical during a crash, which hard drives most definitely are 
not suited for.  And lastly, hard drives require a significant amount of power, which 
directly impacts flight time. 
 
A further possibility is a high-capacity SDRAM module, such as standard PC 
DDR/DDR2 memory.  However, SDRAM is volatile (requires power to maintain its 
contents), which is clearly undesirable - in the event of a crash the internal systems 
may lose power. 
 
Ultimately the decision was made to adopt some form of non-volatile memory.  While 
it is entirely possible to acquire Flash memory or EEPROM chips to be included on 
the PCB itself, such an approach was considered unwieldy.  The obvious approach, in 
contrast, was to use some form of removable memory card, such as CompactFlash or 
MMC/SDC.  After researching the use of MMC/SDC in other projects and seeing the 
successes, the decision was made.  MMC/SDC cards are small, widely available, and 
very cost effective in terms of capacity.  CompactFlash cards, by comparison, are 
more expensive and less widely used - they are limited primarily to high-performance 
areas, which are far beyond our needs. 

2.2.4 Sensors 
While for this project the emphasis was on producing an autopilot for a UAV, the 
question of course is why?  While our focus was on the system itself, not it’s 
applications, we felt it important to provide some sort of proof of concept of at least 
one possible use, to demonstrate the relevance and significance of the project. 
 
Most current UAV applications revolve around environmental measurement, 
surveying and image recording.  UAVs have no capacity for carrying people by 
definition, and our focus is on small, light aircraft rather than larger cargo-capable 
ones, so transport of people and goods is not within our focus. 
 
One non-military field where UAVs are increasingly applicable is meteorology[17].  
With this in mind we researched what sensors could be added to provide basic 
meteorological measurements, with the proviso that they be reasonably inexpensive 
and simple to interface.  The first sensor identified for possible inclusion was a 
pressure sensor.  As noted, this was already considered as a potential means for 
determining elevation, but is also useful - even when not able to determine elevation - 
as a measure of relative pressure across varying latitude/longitude and time. 
 
Another very simple sensor in this realm is for temperature.  IC temperature sensors 
are cheap and very easy to use, and so one was included in the design.  Apart from 
being useful as a meteorological instrument, temperature sensors are useful for 
monitoring devices which may generate excessive heat, notably the battery when 
heavily loaded and the motor during periods of high throttling. 
 
Military use of UAVs is currently dominated by surveillance applications, featuring 
high-resolution image recording capabilities.  While our budget did not allow the use 
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of similarly powerful equipment, we discovered we could acquire cheap video 
cameras and still cameras.  These would demonstrate the capability of the UAV for 
this application; better equipment could be substituted in future as budgeting allows. 
 
During the early stages of the project we conducted several test flights - under manual 
control - with alternately a wireless video camera or a digital still camera attached.  
This proved that we could provide video and still image capabilities.  While in these 
tests there was no microcontroller or image processing electronics to interface with 
the cameras, it showed that the plane was able to fly with the equipment attached, and 
that this was an exciting application that could be pursued later. 
 

2.3 Commercial Applications 
The future outlook for commercial UAVs is bright, with an estimated US$5 Billion 
dollar global market for the year 2010[4].  Currently the market is segmented into two 
broad categories: military and commercial.  The military market - which currently 
makes up around 95% of the global UAV market - has provided much of the funding 
and research into UAV technologies over the last few decades.  UAVs are used by 
defence organisations for things like surveillance, scouting, and for reusable 
communications and radar networks.  Currently the defence market is well served by 
established aerospace companies such as Lockheed Martin, Northrop Grumman and 
Boeing. 

 
In contrast, the commercial UAV market is an area which has minimal development, 
but which shows great potential, particularly in areas such as agriculture, meteorology 
and asset monitoring services.  Companies developing UAVs for the commercial 
market include Bell, Aerosonde and Yamaha.  The use of UAVs in the commercial 
market is still in its infancy, with many research aircraft being created but far fewer 
aircraft ready for deployment, or able to meet the needs of potential customers.  We 
suggest that, given appropriate resources, a mature form of our project could be aimed 
towards the commercial market as a versatile flight platform for autonomous 
unmanned flight.  
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3. Design 
A prototyping methodology was adopted for this project, given it’s research nature.  
This prototyping approach necessitated the creation of modular components (both 
hardware and software), which could be easily reused as the design changed.  Each 
module was designed to be tested and optimised in isolation, prior to integration into 
the main system.  The following sections cover the design of each module, drawing 
from the previous section which covered the foundational research that this project 
was based on. 
 
Note that what is presented here is the design as it was foreseen.  The actual 
implementations in some cases differ. 

3.1 Hardware 
The hardware design of this project was governed by three important principles; 
miniaturisation, reliability and robustness.  These principles impacted on our 
component selection and guided important design choices such as the hardware 
manual switchover implementation. 
 
The principle of miniaturisation was vitally important, as the weight budget for the 
whole electronic system had an upper limit in the order of 100 grams (empirically 
based on the flight performance of the aircraft whilst carrying different loads).  To 
ensure a lightweight and sufficiently miniature design, first preference went to surface 
mount component packages. 
 
As this system is a real-time vehicle control system, reliability is a vitally important 
consideration.  Reliability was the key factor in the selection of a hardware 
implementation of the manual switchover circuitry, so that in the event of software 
malfunction the pilot would still be able to regain control of the aircraft.  Increased 
reliability was also the principle behind ensuring sufficient decoupling was provided 
for each of the digital components by means of 100nF bypass capacitors.  The choice 
of latch-up-resistant and diode-clamped CMOS logic devices from the 74HC series 
recognised the high reliability of such devices, making them a particularly good 
choice for critical path circuitry. 
 
Finally, the requirement of robustness comes as a physical consequence, since the 
UAV experiences turbulence in the air and potentially significant forces – particularly 
on landing.  Outsourcing board fabrication was one design decision based heavily on 
the perceived robustness and quality of the different boards – particularly when using 
plated through-hole constructions.  Another design decision based on robustness was 
the choice of the GPS receiver, which uses a proper screw mounting (as opposed to 
the tape or clip-in competitors), providing good mechanical rigidity as well as 
ensuring a good electrical connection to the surface mount header. Given the major 
requirements for UAVs as outlined in Section 2.2, the following subsections seek to 
address the hardware elements of these design requirements. 

3.1.1 Navigation    
As noted in the research section, our primary and sole navigational aid is GPS.  GPS 
receivers allow a user to augment their position by reading data from several of the 24 
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GPS satellites which orbit the earth [18].  The accuracy of their output is dependant 
on the number of simultaneous satellites a receiver can detect, which is in turn 
dependant on the quality of the GPS receiver.  Given this, and whilst considering the 
key hardware design principles, we selected the lightweight and robust ET-202 from 
GlobalSat.  
 
One problem with most commercial GPS receivers is the relatively slow update rate 
(1Hz).  Concerned that such a slow update rate would detract significantly from the 
ability of the autopilot to control the aircraft, the decision was made to attempt to 
augment the GPS data with some faster updating sensors.  To provide more frequent 
bearing updates a magnetometer was chosen.  Magnetometers provide an indication of 
true north, which can be aligned to grid north based on the magnetic delineation 
factors for the specific areas of operation (an addition of 10 degrees is applicable for 
Victoria).  Through use of twin-axis accelerometers and a pressure sensor it was 
hoped that altitude could be updated more frequently.  
 
Each of the sensors used in this project interface directly with the microprocessor, an 
Atmel ATmega2561.  The Atmel 8-bit AVR line, and the ATmega2561 in particular, 
was chosen because it provides all the I/O functionality required and Robert had 
previous experience with the AVR family.  A hardware multiplexing system was 
chosen for switching between manual and autopilot control, primarily for increased 
reliably.  

3.1.2 Flight Control    
The flight controls provided on the aircraft consist of two micro servos (for the rudder 
and elevator) and a motor-speed controller for regulating throttle.  The signals driving 
these flight controls were to be hardware multiplexed between the AVR autopilot 
generated values and the RC receiver flight controls, as part of the hardware manual 
override.  Further, the fact that the method of control is switched in hardware 
necessitates the need for inputs to the microprocessor indicating the current state of 
operation.  
 
The algorithms used to drive the flight controls are covered further in the software 
design section, with the only hardware consideration being for efficient PWM 
generation requiring minimum CPU resources.  The ATmega2561 provides several 
16-bit counters with multiple triggered pins based on the contents of specific output 
compare registers – providing an efficient method of PWM generation. 

3.1.3 Sensors  
For temperature sensing the LM61 IC sensor was chosen for its robustness and ease of 
use - it has linear, calibrated output which can be interfaced to the AVR using the 
built-in ADC.  The chosen mounting point was inside the aircraft, on the PCB.  When 
fitted inside the aircraft the sensor sits toward the centre of the fuselage, midway 
between the motor and the battery. 
 
The final additional sensor measurement was that of battery voltage.  Battery voltage 
is an important variable as it can be used as an indication of remaining flight time.  
For simplicity, a simple resistor voltage divider was chosen to interface the battery 
voltage measurement with the microcontroller, via the ADC. 
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3.1.4 Data Logging and Communication 
In the initial design an inexpensive 433MHz transmitter and receiver pair were chosen 
to provide communications functionality.  During prototyping and testing, however, 
these modules were found to be severely lacking, both in range and reliability.  In 
need of a replacement wireless system, the Spark Fun Electronics BlueSMiRF v1 [19] 
module was selected.  It provides Class 1 Bluetooth v1.2 support, with far better 
reliability, higher data rate support and a quoted range up to 100m.  It also provides a 
simple RS-232 interface, with hardware flow control, which allows it to be used 
almost transparently. 
 
For the onboard storage, as discussed in the research section, MMC/SDC was chosen.  
MMC/SDCs support at least three physical interfaces - MMC 1-wire, MMC 4-wire, or 
SPI.  The decision was made to use SPI because the ATmega2561 includes an SPI 
port to manage byte I/O.  At 16MHz the AVR can transfer data via SPI at up to 1 
MB/s, which seemed quite fast enough for our purposes.  While the MMC 4-wire 
interface in theory is four times faster than SPI, it would require a software bit-
banging implementation, and as a result it was concluded that this was both 
unnecessary and likely to offer no better performance than SPI. 
 
Additionally, the SPI variant of the MMC/SDC protocol is slightly simpler, and has 
less stringent requirements (e.g. CRCs are optional), thus making the implementation 
simpler and faster.  It has reduced capabilities, but still meets our requirements. 
 

3.2 Embedded Software 
It was clear that we should write the software in C, at least where possible, given its 
size and complexity.  Robert already had some experience with ImageCraft's C 
Compiler for AVR, and nominated it as the compiler and IDE to use.  The alternatives 
included the free WinAVR, utilising gcc, and other commercial compilers such as 
CodeVisionAVR, Atmel's own AVR Studio 4, etc.  Since John Devlin had a license 
for ICC6 for AVR, the cost was waived.  Unfortunately we required the latest version, 
7.08, for ATmega2561 support, but the free trial version proved sufficient. 
 
The approach taken was to develop from the bottom-up, implementing each module 
with a simple, minimal API, and then integrating and utilising those as the main body 
of the program was later developed.  Numerous modules were required, such as: 
 
  - GPS 
  - Logging 
  - Magnetometer 
  - PID 
  - Sensors (ADC) 
  - Servo control 
 
Many of these could be developed independently - the Logging system, for example, 
was developed exclusively independently and under PC simulation for much of the 
project, well before the hardware was assembled. 
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3.2.1 Navigation 
A basic requirement for an autonomous vehicle is instruction.  In the case of an aerial 
vehicle, there are several approaches to providing instruction.  One approach is to use 
a simple procedural language to issue commands to the aircraft [20], e.g. "attain 
altitude of X metres", "turn left 45 degrees", etc.  While a novel and potentially 
powerful approach, it requires a complex set of tools to parse command lists into 
some form of bytecode, an onboard interpreter to execute that code, and potentially 
complex development of the actual command lists in order to perform even basic 
tasks.  While the ability to make arbitrary decisions during flight is very powerful, it 
seems unnecessary for most uses of UAVs. 
 
In particular, the typical autonomous UAV application is envisaged as having the 
aircraft fly a pre-defined route, performing particular tasks at various times and points 
along the way (e.g. taking photographs).  For these applications, the aircraft need only 
a list of co-ordinates to fly to in sequence, with some optional metadata indicating 
payload operations to be performed at those co-ordinates. 
 
Thus, the decision was made to use a simple co-ordinate list as the aircraft's flight 
instruction.  These co-ordinates can be specified as latitude, longitude and elevation 
above mean sea level.  This integrates well with the output of GPS receivers.  It also 
provides a clear distinction between navigation and flight control, whereby navigation 
is controlled by the flight plan, while the actual flight control - including homing in on 
the current navigational waypoint - allows the critical control logic to be implemented 
in C, where it can be reused and heavily tested. 
 
The navigation system is consequently quite simple.  It is given a list of waypoints to 
travel to in sequence.  Using the aircraft's position as determined by the GPS and 
other sensors, it can compute the desired bearing and altitude.  It can then instruct the 
flight control system to manoeuvre to attain that bearing and altitude.  A waypoint is 
considered to have been reached once the plane is within a set Cartesian distance from 
the point. 
 
When the list of waypoints is exhausted, the navigation algorithm can return to the 
first waypoint, or perhaps it's first recorded position (presumably the airfield from 
which it was launched), or some other well-defined location, and enter into some form 
of holding manoeuvre - e.g. circle the return waypoint indefinitely, awaiting further 
instruction or manual control handover. 

3.2.2 Flight Control 
The flight control system, as discussed in Section 2.2.2, has a very important and 
quite difficult task to perform - it needs to satisfy the basic physical requirements of 
flight - appropriate banking angles, aircraft pitch, etc - while responding to 
navigational requirements. 
 
It is somewhat intuitive to adopt a procedural approach to this - perhaps use a finite 
state machine to perform pre-defined manoeuvres in sequence, e.g. "bank 20 degrees 
left for 1 second per 30 degrees turn required", "pitch up 10 degrees, hold for 1 
second, return to neutral pitch, hold for 1 second per metre of climb required", etc.  
This is similar to the procedural command approach mentioned previously, and is 
possibly quite useful for simple computer control of many vehicles - e.g. cars.  
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However, for an aircraft it is very poor.  The aircraft is subject to all manner of 
outside forces, and its actions do not have well defined reactions.  For example, the 
time taken to perform any task may be dependent on the current groundspeed, 
airspeed and wind.  There is substantial freedom of movement in an aircraft, which 
makes simple procedural control difficult, if even possible at all, to implement 
successfully. 
 
Nonetheless, at the other extreme trying to account for any possible contingency 
simultaneously is extremely difficult.  An algorithm which has to allow for any 
starting orientation of the plane, any altitude and any airspeed will inevitably be far 
too complex, and likely not to work in practice.  A compromise is necessary. 
 
Assuming well controlled flight, the state of the plane at any particular time is likely 
to be predictable and steady - it is either flying on a given bearing (possibly changing 
altitude as it does so), or banking to a new bearing.  If we also assume that the flight 
control algorithms do not, under reasonable circumstances, put the plane into any 
other state (e.g. flipped over), we can start to significantly reduce the complexity of 
the flight control.  If these assumptions are met, the only additional assumption that 
needs to be made is that the plane is not operated in conditions that it cannot then 
handle (e.g. high winds). 
 
These assumptions formed the basis of the flight control design.  While they do limit 
the flexibility of the plane - it cannot perform acrobatic manoeuvres - they do 
massively simplify the system, and the resulting UAV is still applicable to most tasks. 
 
Given this, the design focused on two basic states - adjusting altitude and adjusting 
bearing.  Priority is given to one or the other at different times, e.g. the bearing is 
adjusted until it is correct within some tolerance, and then control focuses on 
correcting altitude as required. 
 
Lastly, but critically, the actual driving of the plane's control surfaces needs an 
algorithm that can incorporate feedback on the actual performance of the plane, given 
how widely it can vary, and that can smoothly adjust the control surfaces to home in 
on a desired bearing or altitude, with close to critical damping, and without 
unnecessarily rapid changes that could provoke instability. 
 
A common algorithm used in control systems, as suggested by John Devlin, is a PID 
(Proportional, Integral, Derivative) algorithm.  This family of algorithms are used 
extensively in control systems that rely on feedback for evaluation and correction[21, 
22].  They are relatively simple algorithms, easily implemented on a microcontroller.  
There is also a substantial body of reference material dealing with them, particularly 
how to tune them, which significantly favoured their use. 
  
A PID algorithm controls one variable, so with two control surfaces (rudder and 
elevator) two independent PIDs are required.  Additionally, for motor control a third 
PID might be used.  However, the control surfaces on the plane, and the motor, must 
be operated synergistically to achieve desired outcomes.  For example, the elevator 
needs to incline slightly while banking with the rudder, in order to maintain altitude.  
Consequently, the PIDs cannot necessarily be entirely independent, and must instead 
interact, or at least be controlled together. 
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3.2.3 Sensors 
The GPS receiver has a RS-232 interface for bidirectional communication - GPS 
strings are read from the receiver in the ASCII, human-readable NMEA format, and 
configuration commands can be transmitted to it. 
 
The easiest approach is to read the GPS data into a buffer, and process it line at a 
time.  The human-readable format needs to be converted to machine types.  The 
decision was made early on to avoid floating point types, given they do not have 
hardware support on the AVR and are thus quite costly.  There also appeared to be 
compiler bugs pertaining to floating point use, which exhibited themselves severely in 
simulation.  Instead, all GPS readings are converted to integers or longs, in a suitable 
format, i.e. instead of the usual latitude as degrees, e.g. 43.287362, the latitude is 
stored as ten thousands of a minute, e.g. 25972417. 
 
The magnetometer uses SPI, conflicting with the MMC/SDC interface, given that the 
ATmega2561 has only a single SPI port.  Through the use of individual chip selects 
both devices can share the single SPI port, although the magnetometer’s SPI interface 
can only run at up to 1MHz (versus 25MHz for the MMC/SDC), requiring 
reconfiguration of the SPI interface when swapping between the two. 
 
All other sensors - pressure, temperature, accelerometers and battery voltage - have 
analogue outputs, and so are fed into the AVR's ADC.  All of these are straight-
forward, single-channel interfaces, except the pressure sensor, which has a differential 
output.  This complicates ADC configuration slightly, but not untowardly. 
 
Since only one channel (whether referenced or differential) can be read at a time, the 
ADC must be operated in stages, reading each sensor one after the other.  While it's 
certainly possible to read certain analogue sensors more often than others, all can be 
read quite quickly, so a simple design was chosen, whereby in each cycle each sensor 
is read in turn, and at the end all the new results are logged and made available to the 
other systems. 

3.2.4 MMC/SDC 
There was initially some uncertainty as to what level of support we should implement 
for MMC/SDC.  The official file system of MMC/SDCs is FAT16 (although in the 
real world FAT32 is also used).  Supporting FAT16/32 would allow us to copy data 
back and forth between the UAV and a PC with minimal fuss, as normal folders and 
files.  However, a FAT driver is not a trivial thing to write - the FAT file system 
format is poorly documented, ambiguously implemented, and heavily abused by 3rd 
parties.  In addition, when this decision was being made the intended microcontroller 
was the ATmega128, with half the resources of the ATmega2561 - 4K of SRAM and 
128K of Flash program memory.  Fitting a FAT driver into 4K of SRAM is easy 
enough on it's own, but doing so while leaving enough space for all the other systems 
seemed less trivial. 
 
Other file systems, such as HFS or ext, were briefly considered, but are generally at 
least as complex as FAT, and are not supported under Windows. 
 
One alternative considered was not to use a full file system, and either invent our own 
trivial one, or simply write data directly to the card as a single stream.  This would 
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make the implementation on the AVR very simple.  Unfortunately, while recorded 
data would be accessible on Linux or Mac OS X, it would not necessarily be easily 
manipulated.  Furthermore, it would not be at all accessible under Windows without 
special software, whether written by us or acquired from a 3rd party.  This was 
deemed unsatisfactory in any case, so the decision was ultimately made to support 
FAT16 (and, ideally, FAT32) on the AVR. 
 
The implementation was presumed to take some time, and it was clearly not going to 
be wise to wait for the PCB to be designed and built before working on it.  At the 
same time, it was a complex system that really needed testing throughout 
development - particularly given the aforementioned ambiguities in the FAT format, 
which required practical comparison with authoritative implementations (e.g. 
Windows & Mac OS X) to resolve.  Thus, a somewhat creative and ultimately 
ingenious solution was found - write the FAT driver in a platform-agnostic manner, so 
that with the use of a minimal compatibility shim it could be compiled and tested on a 
PC (specifically, Mac OS X). 
 
To facilitate this, the design was explicitly layered and modular.  The hierarchy was 
envisioned as something like that shown in Figure 4, below. 
 

 
Figure 4: Logging Stack Design 

 
Under PC "simulation", as it was termed, the MMC/SDC layer (and below) would be 
replaced with an implementation that uses standard POSIX file APIs to interact with 
FAT16/32 disk images. 
 
The fundamental unit of the logging system is the block; MMC/SDCs are divided at 
the hardware level into some number of blocks of a particular size - typically 512.  On 
a properly formatted card, this block size matches the sector size used for the FAT file 
system.  The whole I/O system is designed around blocks - it reads and writes a block 
at a time, caches zero or more blocks in SRAM at a time, operates on those blocks 
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one at a time, etc.  At the higher levels an additional conceptual layer - Standard I/O - 
is added which is based on streams of arbitrary length, instead of blocks, as is 
traditional for userland file I/O and as is much more convenient for general use. 
 
The highly layered approach also had the advantage that it allows additional file 
system formats to be supported, transparently to users of the system.  While the 
intention was to support FAT16/32, there were concerns as to whether this would be 
completed in time.  This design reserved the option of dropping FAT support and 
writing our own simple file system driver, with minimal changes to other code. 
 

3.3 PC based software 
There was minimal software to be developed outside the onboard systems.  The 
support for FAT16/32 MMC/SDCs would allow any suitable program to be used to 
read and write files used by the autopilot, such as the flight logs, flight plan and so 
forth.  The PC software needed was for planning flights - creating waypoint lists - and 
if possible for plotting actual paths flown, as recorded in the flight logs. 

3.3.1 Flight Planning & Display 
As noted, the navigation system requires a list of waypoints to navigate between.  
While it's possible to manually construct such a list, it was decided early in the project 
to find or develop proper flight planning software.  The ideal solution would be 
something like Google Earth - a 3D view of the Earth, including road maps, satellite 
imagery and ground elevation - with simple path creation capabilities.  The ideal 
solution would in fact be Google Earth, were it not for the unfortunate limitation of 
Google Earth that you cannot modify the elevation of any particular point in a path - 
only the elevation of every point in the path simultaneously. 
 
It seemed plausible a plug-in or hack could be developed for Google Earth to enable 
the desired functionality, but unfortunately the plug-in API is not officially 
documented or supported, and thus this approach is unpredictable. 
 
Other existing packages offering some elements of the necessary functionality were 
already available, but none met all requirements, as simple as they were - to be 
inexpensive, to provide imagery of the Earth, and to provide the necessary path 
creation tools.  Consequently, the decision was made to develop a custom solution. 
 
While strictly speaking the custom solution need only display a 2D map of the Earth, 
it is obviously preferable to provide a 3D view of the flight path.  Indeed, advanced 
features such as being able to fly through the flight plan were envisioned.  The main 
priority, however, was in the essential flight planning functionality. 
 
The Flight Planner application was developed in Cocoa on Mac OS X, given the 
relevant expertise of Wade Tregaskis, and the power of that development 
environment.  It utilises industry-standard and portable OpenGL for 3D views. 
 
Acquiring ground imagery was somewhat difficult.  While it is possible to buy 
numerous massive databases of high resolution satellite imagery - and geographic 
information such as ground elevation, roads, borders, etc - it was seen as extremely 
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costly.  There are also compatibility concerns between each of the many providers of 
such information; all tend to use their own proprietary formats. 
 
At the same time, it is completely free and simple to access one particular database of 
imagery - Google’s.  In particular, Google Maps is an AJAX-based map viewer that 
operates in a standard web browser.  More significantly, it has a public API and 
Google encourages its use by 3rd parties, including customisation.  It has built-in 
capabilities for rendering paths, marking points of interest, and more. 
 
Thus, it was trivial to include much of the necessary functionality within the 
application, utilising Google Maps operating in a WebKit view.  WebKit is a 
framework built into Mac OS X that provides HTML rendering and JavaScript 
execution capabilities.  It also integrates very well with Cocoa applications, allowing 
the application, written in Objective-C, to be intimately tied to the JavaScript within a 
WebView. 
 
However, while it's easy to use Google Maps in this manner, to couple it with a 3D 
view of the Earth the map imagery itself needs to be extracted.  This is not supported 
by Google, for obvious reasons; they don’t want their imagery stolen.  Much trial and 
error research went into discovering how to extract the map imagery from Google 
Maps.  Several methods were found, documented and implemented. 
 
The end design settled on a simple interface - four views, one of which would be a 
WebView containing Google Maps, the other three OpenGL views displaying the 
Earth and flight plans in 3D.  All display the same data and reflect changes in each 
other.  Multiple flight paths could be specified within each document, and 
manipulated in any of the views. 
 
There were substantial difficulties implementing this, as discussed in Section 4.4. 
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4. Implementation 
This section documents the implementation of the key modules which make up the 
project, and the problems that were encountered during implementation.  
 

4.1 Airframe 
The airframe used for the implementation of this project is a modified “ElectraFun 
XP” trainer aircraft, which typically retails in hobby stores for between $125 and 
$150. The ElectraFun XP measures 76cm in length and has a foam wing with a span 
of 104cm. The aircraft is powered by a Speed 360 electric motor driven by a Lithium 
Polymer battery (which resulted in a substantial improvement in weight and flight 
time over the standard NiMH battery).  The original model was controlled by a 3 
channel 27MHz receiver (for throttle, elevator and rudder), which was upgraded to a 5 
channel Hitec Flash 5 radio system to provide additional channels for manual to 
autopilot switchover.  
 
The total weight of the aircraft including the additional hardware is 513g, only 29g 
heavier than the stock aircraft, due mainly to the significant weight saving of 41g after 
upgrading to a LiPO battery.  The aircraft is fitted out with micro-servos to control the 
rudder and elevator control surfaces, and a motor speed controller to control the 
throttle. The output for each of these control signals (throttle, elevator and rudder) is 
multiplexed between the receiver values (pilot control) and the autopilot values.  
 

4.2 Hardware Implementation 
Distinct from mechanical hardware (as discussed the 
previous section), this section discusses the electronic 
hardware implementation.  The electronic hardware 
occupies a double-sided PCB measuring 10.2cm by 5cm 
(shown in Figure 5), a size governed predominately by 
the size of the fuselage.  In addition, several components, 
notably the GPS, magnetometer and Bluetooth transmitter 
are mounted on parallel boards.  
 
The board is directly interfaced with the 7.4V LiPO 
battery and uses two linear regulators to provide 5V and 
3.3V supply voltages for the various components on the 
board.  Unused space on both sides of the board is 
allocated as ground planes, which are extensively stitched 
together using vias.  The centrepiece of the board is the 
ATmega2561, which we run at the maximum frequency 
of 16MHz using an external full-swing oscillator.  

Several pushbuttons were also included on the board to provide useful functionality 
such as arming and I/O buffer flushing.  
 
 

Figure 5: Fully Assembled Board 
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The following sections describe in detail the various hardware functions that have 
been provided, including the hardware manual switchover circuitry, the various 
sensors, and communications equipment.  

4.2.1 Photo/Video Capability 
To provide a brief proof-of-concept of the aerial surveillance capabilities of UAVs, 
the aircraft was fitted out with both a 2MP digital still camera and, at alternating 
times, a miniature wireless video camera.  The video camera was coupled with a small 
1.2GHz 200mW wireless transmitter which allowed aerial video to be received and 
recorded on the ground. 
 

 
Figure 6: Photo taken from onboard UAV 

 
The 2MP Dolphin digital camera was connected to a 555 Timer circuit and configured 
to take still photographs at 16 second intervals.  A circuit similar to the manual 
switchover circuit could have been used to control the camera shutter, but the timing 
circuit was chosen for simplicity.  The still photographs were stored in the camera’s 
internal memory.  A logical extension to this camera setup would be to use a camera 
module to interface with the microprocessor so that images could be stored on the 
MMC/SDC, and select images could possibly be transmitted over Bluetooth. 

4.2.2 Manual Switchover Circuitry 
As discussed in the design section, for safety reasons the switchover between 
autopilot to manual control was a function to be completed in hardware.  Signals from 
the radio receiver and the microprocessor are multiplexed to the appropriate control 
surfaces.  In the event of software failure, this should ensure that pilot on the ground 
will be able to switch over to manual control and pilot the aircraft – both quickly and 
safely.  Control of the switch is assigned to channel 5 on the radio controller.  All the 
channels on the radio controller produce a PWM signal with a period of 20ms and a 
pulse ‘high’ time between 1.25ms and 1.75ms.  In hardware, the selection between 
manual and autopilot control is based on the width of the pulses.  
 
To control the multiplexer switching input a fixed pulse of 1.5ms is locally generated 
onboard the aircraft, using a RC circuit.  Using two D-Latches as shown in Figure 7 
the pulse received from the radio receiver is compared to this artificially generated 
pulse.  If the receiver pulse is wider than the RC generated pulse, the multiplexer is 
switched to manual pilot mode; otherwise it is set to autopilot mode.  
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Figure 7: Manual Override Circuitry 

 
One further scenario needs to be considered: if the receiver loses the signal from the 
transmitter (e.g. transmitter dies or is out of range).  Using the scheme listed above the 
future state of the aircraft would be the same as a current state (possibly in manual 
control when the pilot is unable to control the aircraft).  To rectify this problem a 555 
timer circuit was incorporated as a missing pulse detector.  If no pulses are received 
for a period of 100ms (equivalent to missing 5 pulses), the circuit is forced into 
autopilot mode and a signal is sent to the microprocessor via an interrupt pin, warning 
that the manual control signal has been lost.  In this condition the plane is 
programmed to enter a ‘mayday’ mode, where throttle is reduced and an emergency 
waypoint – somewhere safe and accessible - is set as the next course to fly towards.  

4.2.3 Sensors 
As discussed in the design section, the flight control system interfaces with a total of 
six different sensing devices using three different communications interfaces.  The 
sensors can be divided into three categories: navigational sensors, meteorological 
sensors and general sensors.  

Navigation Sensors 

The sensors that could be described as navigation sensors include the GPS receiver, 
magnetometer and accelerometer.  The GPS receiver is the primary navigation sensor 
and is used for most of the onboard flight control and data acquisition.  The GPS is 
interfaced with UART0 on the ATmega2561, were the TX connection on the GPS is 
buffered and pulled up to meet the UART voltage ranges specified for the 
ATmega2561.  An active external antenna is connected to the MMCX connector on 
the GPS receiver and is mounted forward of the wings at the top of the fuselage to 
maximise satellite reception.  During the start-up routine, the GPS receiver is 
configured to transmit GPRMC and GPGGA ASCII strings at an update rate of 1Hz.  
These strings provide: UTC Time, Latitude, Longitude, Speed, Course, Date and 
Altitude.  To make effective use of board space, the GPS receiver is mounted 
overlapping the SD card holder and the interface pins to the radio receiver.   
 
The MicroMag2 magnetometer, which was included in an attempt to augment the 
GPS bearings (particularly at low ground speed), connects to the ATmega2561 using 
the SPI interface.  Since the magnetometer is a 3.3V device, all signals from the AVR 
to the magnetometer (reset, chip select, SPI data out and SPI clock) are first passed 
through a voltage divider consisting of 1.8K and 3.3K resistors, to drop the 5V ‘high’ 
signal down to the order of 3.25V.  The magnetometer has two axes (X and Y) which 
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are separately sampled (initiated using SPI commands) from which a bearing can be 
calculated in software.  To save space the magnetometer is mounted at the front of the 
PCB (the furthest point from the electric motor) on a separate carrier board directly 
above the programming headers and accelerometer. 
 
The accelerometer used in this project is the 1.5g MMA6260Q Freescale dual-axis 
accelerometer.  Unfortunately the package for the accelerometer is a leadless QFN, 
which is difficult to hand solder, resulting in unreliable operation at the best of times 
(even after hot air soldering).  Similar to the magnetometer, the accelerometer 
operates with a 3.3V supply and uses a voltage divider on the self-test control input.  
The accelerometer has two analogue outputs (X and Y), which are connected to ADC 
inputs PF4 and PF3 respectively. 

Meteorological 

Meteorology refers to the scientific study of the atmosphere with a focus on weather 
processes, particularly for forecasting[17].  Meteorological sensors therefore make 
specific measurements of atmospheric conditions.  For this project two simple 
meteorological sensors were interfaced; a pressure sensor and a temperature sensor.  
 
Another Freescale device, the MPXM2202 pressure sensor was implemented as the 
first meteorological device.  This sensor is piezoresistive based, providing a linear 
analogue output voltage proportional to the applied pressure.  The MPXM2202 is 
powered from the 5V rail and is connected to the ADC inputs PF0 and PF1 in 
differential mode, with a lower voltage reference of 2.56V to improve measurement 
resolution.  Unfortunately, this turned out to be insufficient; the differential signal 
needs to be pre-amplified before being sampled by the ADC. 
 
The LM61 IC temperature sensor comes in a small SOT-23 package which makes 
good use of the limited board space.  The LM61 is powered from the 5V supply rail 
and is flanked with a 100nF decoupling capacitor (as is each of the other digital 
components).  The output from the LM61 is an analogue output, linearly proportional 
to the fuselage temperature, which is directly connected to the PF2 ADC input on the 
ATmega2561.  

General Sensors 

From the final class of sensors, only a simple battery sensor was implemented.  The 
battery sensor was configured using a simple matched voltage divider consisting of 
two 22K resistors to reduce the 7.4V LiPO battery voltage to within the 0 to 5V range. 
The comparatively low resistor values were used since the ADC input impedance is in 
the order of 10K, relatively close to the 11K calculated from the resistors of a 
Thevenin equivalent circuit.  

4.2.4 Bluetooth Data Link 
The BlueSMiRF Bluetooth module connects directly to UART1 on the ATmega2561.  
It provides a transparent bidirectional link between the AVR and whatever terminal 
device connects to the module via Bluetooth - typically a PC running terminal 
software.  The current implementation is only used for logging from the UAV, and 
ignores incoming data. 
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There was significant difficulty in getting the BlueSMiRF module to work correctly.  
The first problem was that the so-called datasheet provides very little actual data 
about the module.  For example, it shows on its schematics the CTS & RTS pins as 
active high, yet they are active low (it does say this, in some small print).  It also has 
them back-the-front, which of course isn't much good.  Once these problems were 
diagnosed and fixed, the implementation actually worked most of the time. 
 
Only "most" of the time, because it was discovered that the Bluetooth module could 
easily be caused to hang by simply sending data to it too fast from the AVR.  The 
only workaround found for this was to place the BlueSMiRF module into "fast" mode 
before sending too much data to it.  In “fast” mode the hangs were far less frequent. 
 
Another problem discovered was that if too much data is sent to the module while 
there is no Bluetooth connection - even if only slowly - it will fill up the module's 
internal buffer and the module, again, hangs.  The only way to then reset the module 
is by power-cycling it, which in our design requires power-cycling the entire board.  
The datasheet does warn about this, but given there is no way to determine if there is a 
connection or not, it is difficult to avoid.  Ultimately the introduction of the Arm 
button helped work around this problem, by ensuring we had time to connect to the 
Bluetooth module before outputting any data to it. 
 

4.3 Embedded Software Architecture 
The software was implemented pretty much as designed, although many of the finer 
design details were left to trial and error to decide, and some changes were made as 
hardware problems were encountered, or performance issues discovered - e.g. CRCs 
for MMC/SDC data transfers. 
 
As intended, ICC7 for AVR was used as the IDE and compiler for the project.  
Unfortunately, because the ATmega2561 was so new at the time we chose it, and 
represented a significant step up from previous AVRs (> 128K of program memory), 
compiler support was initially poor.  Luckily ImageCraft released an updated version 
(7.08) just in time, which resolved the critical compiler bugs relating to the 
ATmega2561. 

4.3.1 Runloop 
The event-handling methodology chosen is that of the runloop - an infinite loop which 
essentially checks for inputs (e.g. new data from the GPS receiver) and then performs 
the appropriate action.  Figure 8, next page, illustrates the main() function, which 
contains the initialisation process and runloop body. 
 
Most of the runloop's inputs are interrupt-based, such as the arrival of new data from 
the GPS receiver, completion of an ADC conversion, the 10Hz PID timer, etc.  The 
interrupts for those events set global flags, which are checked each time through the 
runloop.  The runloop also polls for some events, such as indication of completion 
from the magnetometer. 
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Figure 8: Main Runloop 
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The advantage of this runloop architecture is that it provides a simple method for 
handling interrupt-driven events outside interrupt-time, and with priority.  For 
example, the 10Hz timer has highest priority - it is checked first, and its actions 
executed first if necessary. 
 
It is very important to be able to handle interrupt-based events outside interrupt time, 
for two main reasons: 
 
  - Firstly, many of the core systems cannot be used at interrupt-time.  For example, 
the Bluetooth logging system can optionally use the interrupt-driven UART 
transmission system, which would not work properly if invoked from an existing 
interrupt. 
  - Secondly, many operations - such as logging - can take a substantial amount of 
time to perform.  Critical systems, such as flight control, should not be blocked from 
execution for any significant period. 
 

 

4.3.2 Interrupt-based I/O 
To ensure that time is not wasted polling various I/O devices, interrupts are used to 
handle the ADC conversions, UART data transfer and the output drive PWM signals 
for the servos.  An interrupt-based 10Hz timer is also used to schedule period events, 
such as execution of the PID algorithms, initiation of ADC conversions, etc.  Once the 
timer initiates these, though a series of global flags, the ADC “conversion complete” 
interrupts are used to step through each of the required conversions for a full 
conversions cycle.  Likewise, the PID algorithms and magnetometer sampling are 
triggered by the timer.  
 
Both of the UARTs are configured in a circular buffered arrangement, making use of 
the RX and DRE interrupts to facilitate efficient data transfer.  UART0 is connected 
to the GPS receiver, and so will typically only receive approximately 140 characters 
(GPRMC and GPGGA strings) at one second intervals.  With this irregularity in 
updates, interrupts proved to be a good choice for UART management.  When the 
‘CRLF’ end-of-line characters are detected a flag was set indicating that a complete 
GPS data string is now in the buffer and ready to be interpreted. 
 
Conversely, UART1 connects to the Bluetooth module and is used solely for 
transmission.  It is written to a line at a time, which is copied into the buffer, and then 
execution continues.  The buffer is gradually emptied asynchronously as the UART 
transmits it’s contents byte by byte, using a “transmitter ready” interrupt. 

4.3.3 Flight Control Algorithm 
As introduced in the design section, PID controllers are used to fly the aircraft in 
autopilot mode.  PID controllers manipulate a control variable (in this case an aircraft 
control surface) by applying three mathematical functions to the current error 
deviance within the system (the difference between the desired value and the current 
value).  These mathematical functions - covering the three elements of the PID; 
proportional, integral and derivative - are summed with their associated gains to 
provide an output, which is scaled and thresholded before driving the specific control 
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surfaces.  As discussed in the previous section, a 10Hz timer is used to trigger the PID 
updates.  
 
 
pValue = pid->pGain * error;  //Compute proportional part 
 
pid->iState += error;    //Sum error 
if (pid->iState > pid->iMax){  //Threshold error to prevent 
runaway 
   pid->iState = pid->iMax; 
} 
if (pid->iState < pid->iMin){ 
   pid->iState = pid->iMin; 
} 
iValue = pid->iGain * pid->iState; //Compute integral part 
 
dValue = pid->dGain * (currValue - pid->dState); //Compute Derivative 
pid->dState = currValue; 
 
return ((pid->decoupledGain * pid->ageGain * (pValue + iValue + 
dValue)) >> 8); 

 
The following parameters are used by the bearing PID: 
   pidBearing->pGain  = 6; 
   pidBearing->iGain  = 1; 
   pidBearing->iState = 0;    
   pidBearing->iMax   = 10; //Threshold Value 
   pidBearing->iMin   = -10; //Threshold Value 
   pidBearing->dGain  = -8; 
   pidBearing->dState = 0; 
 
These values may require further tuning to ensure consistent PID operation.  Values 
have not yet been tuned for the altitude PID, but it is postulated that similar values 
would be used since the actual control output (i.e. a servo) is the same for the rudder 
and elevator.  
 
The primary control surfaces (rudder and elevator) operate under decoupled control, 
where a separate PID is used to control each of the control surfaces.  Using decoupled 
control both greatly simplifies the individual controller designs and mirrors some of 
the physical constraints (e.g. during a bank lift is reduced, which makes climbing 
more difficult).  For simplicity the throttle, which is generally considered to be an 
ancillary control, is set to maximum for the normal autopilot case and minimum (no 
throttle) for the emergency mayday case (in order to slow down the aircraft and avoid 
injury cased by the propeller).  Apart from the specific gains on each of the PID 
terms, an overall gain to each PID is assigned to assist with the decoupled control 
separation.  An example of this would be the case where the elevator is the primary 
control surface: here the elevator gain is increased and the rudder gain is decreased.  
 
Whenever the aircraft is switched into autopilot or begins to track a new waypoint, a 4 
step algorithm is followed. 
 

1. Firstly, an initialisation step ensures that all control surfaces are set as neutral 
to ensure smooth transition between manual and autopilot modes. 
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2. Through decoupled control the autopilot acquires the bearing for the next 
waypoint and steers the plane to track this bearing.  To track the bearing a gain 
of 7 is assigned to the bearing PID and 2 is assigned to the altitude PID. 

3. Once the bearing is being tracked (with error of less than 5 degrees for five 
consecutive cycles), focus is given to the altitude.  For altitude tracking a gain 
of 8 is assigned to the altitude PID and 2 is assigned to the bearing PID. 

4. After several consecutive cycles with low tracking error in the altitude (less 
than 8m, due to GPS constraints), the altitude and bearing PIDs are set to 
relatively low values – typically 3 to 4.  They remain at these values to allow 
fine-tuning of the aircraft as it navigates towards the desired waypoint.  When 
the aircraft reaches the waypoint, the process repeats from step 2.  

 
Since the update rates from the GPS receiver are relatively slow (1Hz) an age gain has 
been implemented to reflect the increasing uncertainty of results between 
measurements.  Each time GPS data is read, the ageGain variable is set to its 
maximum value – reflecting the accuracy and freshness of the current data.  Each 
successive PID operation decrements the ageGain variable, so that each successive 
operation has a smaller effect – recognising that the data less accurately reflects the 
current state of the aircraft.  After the separate gain terms are applied the outputs are 
assigned to the various output compare registers (OC3A, OC3B, OC3C) which in turn 
control the pulse widths for the various servos and motor speed control. 

4.3.4 Servo Control 
As introduced in section 2.2.2, servos are PWM driven, with a period of 20ms and a 
pulse ‘high’ time of between 1.25ms and 1.75ms[12-14].  To generate these signals a 
16-bit counter in the ATmega2561 is used in phase and frequency corrected PWM 
mode.  In this mode the counter runs as dual slope counter, counting up to the TOP 
value (set to 2500) and then back down to zero.  The three output compare registers 
(OC3A, OC3B and OC3C) each hold the current trigger threshold for the different 
PWM channels (throttle, rudder and elevator).  Each trigger value is associated with a 
particular GPIO pin.  When the counter is equal to the output compare value on an 
upward count the associated pin is set to ‘0’ (as shown in Figure 9).  Conversely, pins 
are set to ‘1’ when their associated output compare register is equal to the counter on 
a downward count. 
 

 
Figure 9: PWM output scheme 
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4.3.5 Data Logging 
The data logging hierarchy is shown in full in Figure 10, next page. 
 
There are two forms of data logging - logging to onboard storage, and logging via the 
Bluetooth wireless connection.  These are exposed to the rest of the system as fprintf 
and printf, respectively.  This simple, familiar interface makes logging trivial to use, 
and greatly aided debugging. 
   

 
Figure 10: Logging Stack 

 

LOG macros 

On top of printf/fprintf are a variety of macros which have greater semantic value.  
These are: 
 

- LOG_ERROR: definite errors.  These messages are typically logged first to 
Bluetooth, then to onboard storage. 

- LOG_WARNING: possible errors, or irregular behaviour.  These messages 
are typically logged first to Bluetooth, then to onboard storage. 

- LOG: general operational messages.  These messages are typically logged 
only to onboard storage. 

- LOG_DEBUG: debug messages.  These messages are typically logged only 
to onboard storage, and only in debug builds; in release builds they do 
nothing. 

 
There are variants of each of these with a suffix of "2", which take one or more 
parameters after the main argument, the format string.  This distinction is necessary 
due to the limited pre-processor used by ICC7 for AVR, which has no way to express 
a macro which takes zero or more variable arguments. 
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Additionally, there are two other families of logging macros, which use the prefixes 
"DISK_" and "WIRELESS_" instead of "LOG_".  These are for use by the onboard 
storage systems and the Bluetooth systems, respectively.  They ensure that they do not 
perform any action which would result in recursion into the calling code - i.e. the 
DISK_ family of logging macros will never log to onboard storage, as that could lead 
to an infinite loop.  Additionally, the disk and wireless systems are not re-entrant. 
 
The actual destination for messages logged to the onboard storage is set by calling the 
setLogFilePath function.  If a destination is not set, messages that would go to 
onboard storage are sent to Bluetooth if possible, or failing that are lost.  The main 
function sets the default log file, using this function, to "/Flight.log" after initialising 
the logging system. 

printf/fprintf 

At the heart of the logging system are the printf and fprintf functions, which print to 
Bluetooth or to a specified file, respectively.  Underneath, all logging functions 
ultimately call one or other of vprintf or vfprintf.  These configure the output 
destination, whether Bluetooth or a file, and then call _vprintf.  _vprintf performs the 
actual parsing of the format string and subsequent output.  It calls the putchar function 
to output each character in turn.  Depending on how _vprintf is configured, putchar 
routes the character to the Bluetooth module or a file. 
 
The choice to write our own version of printf, rather than use the built-in version 
provided with ICC7 for AVR, was somewhat arbitrary, somewhat accidental, and 
ultimately a good one.  Initially the intention with logging was simply to output 
simple static strings to Bluetooth, primarily for debugging.  It then became apparent 
that it would be very useful to be able to output program data (i.e. values of 
variables), in a human-readable format.  So, basic formatter functionality was added.  
Initially the requirements were minimal, so there was no justification for using the 
rather large built-in printf.  Over time, more capabilities were added.  And once basic 
I/O for the onboard storage was functional, it was of course desirable to be able to 
fprintf to it. 
 
Thus, the final implementation has ended up being very powerful and flexible – more-
so than the built-in version, in fact.  The built-in version is most likely more efficient, 
but we now rely on formatters and other features which it doesn't have, making it non-
trivial to switch to. 

Bluetooth 

putchar can output to Bluetooth in one of two different ways, as controlled by the 
USE_HARDWARE_FLOW_CONTROL_FOR_BLUETOOTH define.  If defined as 
true at compile time, the built-in Bluetooth interface is used.  This uses the hardware 
flow control - CTS & RTS - provided by the BlueSMiRF module.  It operates 
synchronously, blocking while the BlueSMiRF module indicates it is not ready, or 
while the previous character is still be transmitted by the UART. 
 
The alternative mode uses the interrupt-based UARTInt module, which allows 
putchar to place each character into a buffer and return immediately.  When the 
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UART is ready to transmit, it generates an interrupt which actually copies the next 
byte into the UARTs buffer. 
 
Both approaches were explored as it was felt that it might be more efficient and 
suitable to use the interrupt-based approach.  The BlueSMiRF module did not seem to 
require hardware flow control; it typically always indicated it was ready to receive 
data.  Thus, both approaches are functionally equivalent. 
 
While the interrupt-based version requires a few dozen clock cycles for each interrupt 
(and thus each byte), in addition to the cost of placing the data into the buffer to start 
with, at maximum transmit rate to the BlueSMiRF module (250,000 baud) it takes 
640 clock cycles on the AVR to transmit each byte.  Thus, the blocking method may 
be wasting a significant number of cycles waiting, depending on how long it takes 
_vprintf to process each character.  It is also better to take a little time at regular 
intervals, than block for a potentially long time doing everything all at once. 

Standard I/O 

The Standard I/O API provides a fairly straight-forward file API.  It provides a 
handful of functions for working with files - openFile/closeFile, seekInFile 
setFileLength and readFromFile/writeToFile. 
 
Files are identified by their path, using '/' to separate path components.  The standard 
I/O API uses 32-bit types, to support files up to 4 GB in length (provided the 
underlying file system and storage medium supports such sizes). 
 
Under the covers the Standard I/O module merely translates between the user and the 
underlying file system drivers.  It performs generic parameter checking, converts the 
opaque types (e.g. file_t) to the underlying types (e.g. struct File*), and so forth.  It 
determines which logical volume the file resides upon, and then invokes the 
appropriate driver for that volume to perform the actual file operation. 

Volume interface 

Ideally it would be up to the "user" (code outside the logging system) to configure the 
logical volumes of the system.  Since only one volume is currently needed, this is 
currently done automatically by Standard I/O.  Nonetheless, the interface exists to do 
this explicitly and manually.  The Volume interface module provides two functions 
for manipulating volumes - createVolume & destroyVolume. 
 
createVolume takes as parameters the logical address and size of the volume, relative 
to the underlying storage medium, and attempts to find a driver that recognises the 
data within.  It does this by iterating over all known drivers (as specified at compile-
time in an internal data structure) and asking them one by one if they can read the 
volume.  If a driver indicates it can, the appropriate internal structures are setup, the 
driver fully initialised for the new volume, and an opaque handle for the new volume 
returned. 
 
destroyVolume simply attempts to remove all records of the given volume, provided 
there are no open files referencing it, etc.  It is not currently used, but is provided for 
completeness. 
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FAT driver 

The bulk of the onboard storage system is contained within the FAT driver.  It is a 
unified FAT driver, supporting FAT16 and FAT32.  FAT12 is also provisioned for, 
although was not supported because there is no need presently. 
 
In order to understand the driver, a basic understanding of the FAT file system format 
is necessary.  Refer to appendix E for a basic summary.  The step by step process by 
which the driver performs its work is too intricate to be detailed here; instead only the 
key attributes will be noted.  
 
The FAT driver interacts with the actual storage via the block buffer, which divides 
the disk up into regularly sized blocks (typically 512 bytes).  Its basic access pattern 
for retrieving data is to calculate the address of the required data, load the block which 
corresponds to that address, and then manipulate that block as necessary.  Many 
structures within the FAT file system, primarily files themselves, may take up more 
than one block.  In such cases, the FAT driver iteratively processes the blocks one at a 
time.  For example, to write 1000 bytes to a typical FAT16 volume (with a 512-byte 
sector size) will require at least two blocks of the file to be written. 
 
One self-imposed restriction of this implementation was that it should not use more 
than 1 block at a time, to allow it to operate within the absolute minimum amount of 
memory possible.  This is not especially difficult to do, but is laborious and, if not 
balanced by other optimisations, does incur a significant performance penalty.  In our 
case, use of the caching block buffer layer largely negates the performance penalty. 
 
To augment the standard Volume and File structs, the FAT driver maintains its own 
list of FATVolume and FATFile structs, the pointer to which is stored in the 
driverData field of the Volume and File structs.  FATVolume and FATFile also point 
to their parent Volume and File, respectively.  This can be considered a poor-man's 
subclassing. 
 
The FATVolume struct contains all the necessary information from the FAT boot 
sector - things like the sector size, start of FAT, start of data, sectors per cluster, etc.  
It is referenced frequently when performing operations on files, to retrieve key 
information. 
 
The FATFile struct contains FAT-specific file information, and caches certain useful 
information, such as the cluster # containing the current file pointer, and the direct 
logical address of the file's directory entry (which is used frequently when writing to 
the file, to update the file's size as recorded in the directory entry). 
 
The current implementation, while quite functional and thus far completely reliable, 
has significant room for improvement and optimisation.  Section 6.2 details some of 
the perceived problems with the current implementation. 

Block buffer 

The block buffer module's primary purposes is to manage blocks in memory - keeping 
track of the address of each block, whether it has been modified in memory, etc.  Its 
secondary purpose is to cache blocks in memory and thus optimise MMC/SDC I/O.  
The module maintains its data internally using the Block struct, and provides to the 
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layers above an opaque reference to a block, which can be used to retrieve the block's 
data, mark the block as modified, free it, etc.  The Block struct is defined as: 
 
typedef struct { 
    uint32_t logicalAddress; 
    unsigned char referenceCount; 
    unsigned char age; 
    int isDirty:1; 
    uint8_t data[BLOCK_SIZE]; 
} Block; 
 
The logicalAddress and data fields are self-explanatory.  The others are worth 
examining. 
 
Blocks are reference counted, meaning each call to allocateBlock increments the 
reference count of that block, which must (at some time later) be decremented by a 
balancing call to freeBlock.  The intention for this is to allow for recursive algorithms, 
and to allow flexibility with regards to the block size. 
 
When a block is freed for the last time (i.e. its reference count decrements to zero) it 
becomes eligible to be reused for a different address.  However, by default it remains 
in memory, so that if it is reused again it can be resurrected, and the data need not be 
read from the MMC/SDC again. 
 
Blocks also have an age, which indicates how long since they were last used.  Calls to 
allocateBlock, blockData, rereadBlock & markBlockAsModified set the age to 0.  On 
every call to allocateBlock, every other block also has its age incremented.  The age 
of the block is taken into account when determining which unused block to evict 
when it comes time to read in an uncached block; older blocks are evicted first.  The 
replacement algorithm is thus an approximation of LRU (Least Recently Used). 
 
Performance tests of the block cache show that even with only a small cache - e.g. 8 
blocks - it reduces the number of MMC/SDC I/O operations by as much as two orders 
of magnitude. 
 
The last field, isDirty, indicates whether or not the block's data has been modified in 
memory and not yet written back to the MMC/SDC.  The initial implementation did 
not have this; whenever a block was modified in memory, it was immediately written 
back.  This resulted in many more writes than strictly necessary, since the typical 
usage pattern for our purposes is to write one line at a time to storage, where each line 
is typically around 60-80 bytes; this resulted in seven or eight writes per block, 
instead of one.  When it was realised that the logging performance was sub par, the 
behaviour was changed to delay writing back to the MMC/SDC for as long as 
possible.  When the block is modified in memory, it is marked as dirty.  The block is 
not actually written back to the MMC/SDC until it is replaced in the cache, or an 
explicit flush is triggered.  For a sufficiently large cache (e.g. 8 blocks) this closely 
approximates optimal behaviour. 
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Additionally, the replacement algorithm favours clean blocks for eviction over dirty 
ones, on the assumption that blocks that are written to are likely to be written to again 
in the near future.  For our usage pattern this is an accurate assumption. 
 
A negative side-effect of this caching scheme, however, is that modifications are not 
necessarily written back to the card with any regularity, or in any bounded time.  
Thus, it is critically important to explicitly flush the block cache prior to removing the 
MMC/SDC.  This was resolved using the "arm" button - if held down it will cause a 
full flush at the end of each iteration of the main runloop.  Unfortunately, there is still 
a race condition in doing this, as the system does not stop using the card even when 
the button is pressed, so it is still possible the card may be removed midway through a 
write.  Luckily, while this may cause the data being written to be lost, it is unlikely to 
corrupt any data already written and flushed to the card. 

Physical media 

The Physical media layer is meant to abstract away the details of reading from and 
writing to the underlying medium - MMC/SDC in the current implementation.  It 
defines the block size as used by the layers above, and can potentially modify it 
(depending on whether the MMC/SDC allows a different block size). 
 
Since the only physical media supported are MMC/SDC, and they don't have any 
particularly onerous requirements, this layer is largely redundant. 

MMC/SDC API 

This layer handles the actual MMC/SDC protocol.  It implements the logic to send 
commands to the MMC/SDC, to interpret the response, and to perform data I/O.  The 
MMC protocol over SPI uses a 6-byte command packet, which has a header and 
trailer, a 7-bit CRC of the whole packet, a 6-bit command code, and room for up to 32 
bits of parameter data.  Responses are one or more bytes; the first is typically a status 
byte indicating the general success or otherwise of the command, while other bytes 
may follow for particular commands (e.g. data I/O). 
 
The SDPerformCommand function sends a command and returns the response.  
Sending a command is relatively straight-forward, but relatively lengthy.  First, 8 SPI 
clocks must first be provided, to ensure the card has enough time to respond to its 
chip select being asserted.  Then the 6-byte command packet is sent.  Then up to 64 
clock cycles may need to be given to the card before it returns the response byte.  At 
the end of each command sequence (which, for data I/O, is more than just a simple 
command and response), the card must be disabled (by deselecting it's chip select) 
and an additional 8 SPI clocks provided to allow it time to finish up it's work. 
 
Initialising the MMC/SDC is surprisingly complex and error-prone, and took a 
significant amount of trial and error to perfect.  Initialisation is the only point at which 
MMCs and SDCs differ - the SDC format is a successor to MMC, and while they 
support the same basic protocol, they require a different initialisation command to be 
used, supposedly so that they are distinguishable from MMCs.  Thus, the process 
requires that an SDC initialise be attempted first.  If it fails, an MMC initialise is tried 
instead.  So long as one or the other succeeds, the card is then ready for use. 
 
In full, then, the initialisation process is: 
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1. Provide at least 128 SPI clocks and wait at least 1ms, to allow the card to boot 

up. 
2. Issue CMD0 ("go idle") until the card responds that it is ready and idle.  This 

should not take more than 100ms, so to handle the case where no card is 
inserted a timeout must be included. 

3. Issue ACMD41 (CMD55 followed by CMD41 - "SD initialise") until the card 
responds that the command was successful and it is no longer idle.  This 
should not take more than 500ms, so to handle the case where an SDC is not 
inserted, a timeout must be included. 

4. If the previous command failed, issue CMD1 ("MMC initialise") until the card 
responds that the command was successful and it is no longer idle.  This 
should not take longer than 500ms, so to handle the case where no valid card 
is inserted, a timeout must be included. 

5. Provided either of steps 3 or 4 were successful, the card is now initialised and 
ready for use. 

 
Once it is initialised, functionality which is conveniently wrapped up into the single, 
simple function SDInitialise, the MMC/SDC layer can be used.  The most common 
functions are SDReadBlock and SDWriteBlock. 
 
The MMC protocol uses a 7-bit CRC for command packets, as noted, and a variation 
of the CCITT 16-bit CRC (also known as the Xmodem CRC) for data transfers.  The 
SPI version of the protocol does not require CRCs to be used for any command other 
than CMD0 (which has a fixed format and thus a well-defined CRC, which can be 
hardcoded for simple implementations).  While our implementation does fully support 
the use of CRCs, their computation is extremely expensive on the AVR, relative to the 
cost of the actual I/O itself, and so they are disabled by default.  They can be enabled 
by defining USE_CRC_FOR_TRANSFERS to be true at compile time. 

SPI 

The SPI layer is very trivial - there is the SPIInit function to configure the SPI port, 
SPIWrite and SPIRead for the SPI I/O, and setSPIDivider/getSPIDivider for 
managing the speed of the SPI port (necessary because the magnetometer is limited to 
a 1MHz SPI clock, while the MMC/SDC can operate at up to 25MHz). 
 
Nonetheless, there was a surprising amount of difficulty in getting SPI to work 
properly.  It was found that  the SPI CS needs to be asserted for the duration of an SPI 
read or write.  If it changes during a read or write, a "write collision" error occurs, and 
the SPI port disables itself!  This was a most perplexing intermittent problem for a 
long time, as we used GPIO pins for the magnetometer and MMC/SDC chip selects, 
so we were not explicitly configuring the SPI CS.  Thus, it was an input by default, 
which meant it was floating.  So, SPI operations would randomly fail.  Once this 
problem was resolved, SPI worked fine. 

CRC 

Two CRCs are required for our system at present - Xmodem CRC and CRC7, both for 
the MMC/SDC protocol.  Wade had previously implemented a 16-bit CRC for 
CSE31NET, so the code from that was used as the basis for the AVR implementation. 
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The CRC7 was then derived from the CRC16 implementation, which was a little 
tricky given the peculiar alignment (7 bit) of each "word". 
 
Both implementations are correct and work fine on the AVR.  However, they were 
found to be very slow.  This was largely because ICC7 for AVR is very simple and 
produces very obese and suboptimal assembly code.  It was also partly because the 
implementation was written to be simple and easy to read in C, without any 
optimisations.  While some improvements were made, testing showed CRCs were 
simply taking too long to calculate - particularly the Xmodem CRC for the 
MMC/SDC data I/O, which was taking about 30ms (versus around 2.5ms for the 
actual data transfer itself).  Thus, an alternative implementation was adopted, from 
AVR Libc, the gnu standard library for AVRs[23].  Their implementation turned out 
to be around 7x faster than ours.  To use the AVR Libc implementation instead of 
ours, define USE_AVRLIBC_CRC16 to be true at compile time. 
 
In any case, it was eventually decided that CRCs were unnecessary, and so by default 
they are disabled.  They are functional, however, and can be enabled for MMC/SDC 
use by defining USE_CRC_FOR_TRANSFERS to be true. 

4.3.6 Magnetometer 
Before using the magnetometer's output, we wanted to ensure it was accurate.  To do 
this, we printed out a circle divided into 24 wedges, such that each wedge is 15 
degrees, as shown in Figure 11, below. 
 

 
Figure 11: Magnetometer Calibration 

 
Using a magnetic needle compass to determine magnetic north, we carefully aligned 
the printed sheet and secured it to the desk.  We then aligned the PCB with the edge 
of each wedge in turn, noting the measurement from the magnetometer each time.  
These were recorded in a spreadsheet, and then charted, yielding the result shown in 
Figure 12, below. 
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Figure 12: Magnetometer uncalibrated chart 

 
There is a clear DC offset for both X & Y readings, as well as a significant phase 
offset for the Y axis.  The DC offset is easy to correct by adding a calibration constant 
to the measured value, which (for estimated calibration values) yields the results 
shown in Figure 13, on the following page. 
 

 
Figure 13: Magnetometer calibrated chart 

 
 
The deviation from "true" value (as determined by the compass) is shown in Figure 
14.  Clearly there is still some error due to the phase offset, but it is quite small, and 
certainly within the degree of error expected for the calibration process used.  In the 
air, when the plane is not perfectly flat, there will of course be further deviation from 
"expected" values.  In any case, the interference from the motor rendered the 
magnetometer unusable in practice, as noted previously. 
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Figure 14: Deviation of magnetometer from compass measurement 

4.4 Flight Planner 
The core functionality was implemented in the Flight Planner, although time did not 
allow for much more (in particular, texture mapping Google Maps imagery into the 
3D views was not completed).  The end result is shown in Figure 15 below. 
 

 
Figure 15: Flight Planner screenshot 

 
 
The final implementation is relatively trivial, with the structure shown in Figure 16.  
Appendix F shows the full class hierarchy. 
 



 40 

 
Figure 16: Flight Planner relationship diagram 

4.4.1 FlightPlanDocument 
 
Most of the menial tasks like document management are handled automatically by 
Cocoa.  The FlightPlanDocument class simply stores the current flight paths, 
providing an API for the views to modify these paths (e.g. in response to the user 
manipulating a point within the view).  The FlightPlanDocument also handles saving 
and opening of documents, as well as the export of paths in UAV format. 
 
The FlightPlanDocument needs to keep the four views synchronised, which includes 
keeping them centred on the same point, as well as reflecting changes to a path in all 
views.  Whenever a shared property is changed (e.g. current position), the 
FlightPlan3DView or Google Maps WebView tells the FlightPlanDocument, which 
then informs the other views as necessary. 

4.4.2 FlightPlan3DView 
The FlightPlan3DView is relatively straightforward.  It needs to generate the 
geometry for the Earth and the paths.  It then renders those.  As noted, there was not 
sufficient time to implement texture mapping, so the Earth is rendered as a simple 
blue sphere.  Paths are rendered as curved line segments following the great circle arc 
between their endpoints, and points are marked as spheres of a fixed size, relative to 
the viewer. 
 
One particularly interesting detail is the generation of the Earth mesh.  Originally the 
sphere-generating function of the GLU library was used, which while trivial to 
implement was not very flexible.  And, most importantly, it generates the entire 
sphere.  For most uses, the focus is on such a relatively tiny portion of the Earth's 
surface that it is essentially flat (requiring very few triangles to represent accurately), 
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and so small that to meet the detail requirements would require a mesh with many 
orders of magnitude more points than are practical. 
 
So, a custom mesh generator was implemented, which generates only the portion of 
the sphere necessary to cover the current view, with a fixed number of points.  Thus, 
the rendering load is constant, as the number of points is constant, and the smoothness 
of the Earth's surface increases as the user zooms in.  This works very well in 
practice, although it can be computationally expensive if the view is changed rapidly, 
requiring many regenerations of the mesh.  This could be optimised significantly in 
future; time did not allow for the current implementation. 

4.4.3 Google Maps WebView 
The Google Maps view serves two purposes - first, it was an easy first step to 
providing an interactive map prior to implementing the texture mapped 3D views.  
Second, it is the gateway to Google Maps through which imagery can be retrieved for 
external use. 
 
The Google Map API is officially available and well documented [24], making it 
quite easy to use.  It runs within any web browser that supports HTML, CSS and 
JavaScript.  Mac OS X's WebKit framework meets these requirements, and can be 
embedded within a Cocoa application very easily.  The architecture is thus that the 
actual view class in which Google Maps is rendered is a WebView, which loads a pre-
defined local HTML file (Map.html, listed in appendix G) containing references and 
code for Google Maps.  The Cocoa application, written in Objective-C, can interact 
with the WebView by executing JavaScript within it.  It also exposes itself to the 
WebView using the Objective-C to JavaScript bridge, allowing JavaScript within the 
WebView to invoke methods on the exposed objects.  This allows, for example, the 
FlightPlanDocument to be notified of changes in the Google Maps view position. 
 
The Google Maps API also provides JavaScript classes and functions for creating 
vector paths, which are used to display the flight paths.  At present it is not possible to 
manipulate these paths within the Google Map view itself; the Google Maps API does 
not provide such functionality. 

4.4.4 GoogleMapCache 
The GoogleMapCache's purpose is to satisfy requests for map imagery.  Google Maps 
tiles its maps into squares 256 pixels on each side.  Each image must be requested 
separately over HTTP, and as the desired level of detail increases, the number of map 
tiles to manage grows exponentially.  The GoogleMapCache abstracts away all the 
management and downloading of map tiles.  It provides a simple asynchronous 
interface - requests are issued for the tile or tiles which contain a given coordinate (or 
coordinate rectangle).  The GoogleMapCache queues up requests to Google's web 
server for the necessary images, and as they download calls back to the original 
requestor with the data. 
 
While the GoogleMapCache class has been implemented, it was not ultimately used, 
and has not been tested. 
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4.5 Budget 

Income: 
Source Amount 
La Trobe University Project Budget $200.00 
La Trobe University Project Budget $200.00 
Dick Smith Electronics Project Grant $200.00 
Total: $600.00 
 

Expenditure:  

Item Cost 
GPS $78.95 
GPS antenna $22.95 
Accelerometers $10.00 
Magnetometer $49.95 
Microprocessor (AVR) $12.00 
Bluetooth RF Link $93.95 
Sensors (temperature, pressure) $20.00 
LiPO battery (x 2) $64.00 
LiPO Charger $45.00 
Servo connectors/Power connectors $20.00 
Misc production/Mounting/small 
components costs 

$55.00 

Total Cost $471.80 
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5. Results 
While the project was not completed to the level we would have liked, what was done 
produced some fantastic results.  The first stage of results was in getting the system 
operating onboard the aircraft during flight, albeit under manual control.  This 
provided us with extensive sensor data and helped us discover problems (e.g. the 
motor's interference of the magnetometer) while the autopilot was still in early 
development.  Changes could thus be made relatively cheaply, and tuning could be 
estimated prior to the first autopilot test. 
 
We will now present our results, starting with the basic flight results, from the six test 
flights performed to date.  There was no strict plan to the test flights; many were 
prompted by favourable weather, and the intention of most was simply to increase 
total flight time and the body of data collected. 
 

5.1 Flight results 
While one flight ended in disaster when the wing snapped (a rare but not 
unprecedented mechanical fault, a known problem with ElectraFun XP planes), most 
flights were entirely without such incidents and yielded promising results.  An 
example flight log is shown in appendix D. 
 
Using a basic parsing and graphing Matlab script, we are able to plot the path of the 
plane in 3D, as shown in Figure 17, below. 
 

 
Figure 17: Matlab flight path plot 

 
Using a small tool we wrote, log2csv, the log files for each flight were converted to a 
format Excel could import, and then charted.  To start with, we'll look at the bearing 
measurements. 
 

5.1.1 Bearing 
The bearing results are difficult to chart (in Excel at least), because of course they 
wrap around from 0 to 360 and vice versa.  A typical result (taken from flight #6) is 
shown in Figure 18.  Note the behaviour of the magnetometer, pinned to around 270 
degrees for most of the flight.  Prior to take off, and after landing, it appears to show a 
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correct value - indeed, given the plane is not moving at these times it the 
magnetometer bearing is likely far more accurate than the GPS bearing. 
 

 
Figure 18: Flight #6, GPS vs Magnetometer bearing 

 
Nonetheless, the magnetometer was shown to be quite accurate during lab testing, as 
detailed in Section 4.3.6.  Hopefully in future a solution can be found to prevent the 
interference seen above, so that the magnetometer can be used to it's full potential. 

5.1.2 Accelerometers 
The accelerometers were ultimately not used by the autopilot, but their readings were 
logged consistently nonetheless.  Figure 19, next page, shows the recordings from 
flight #5, where the wing snapped.  It is clear that there are several phases.  At first 
the plane is held relatively still a little while, during preparation for takeoff.  It is then 
launched, and the accelerometers reflect the movement of the plane as it rolls, pitches 
and yaws, as well as momentary bumps from strong gusts of wind.  At only about 90 
seconds into the flight, the wing snapped, sending the plane into a rapid downwards 
spiral into the ground, the impact of which is clearly visible at around the time 17875.  
There it sits for some time until it is retrieved, and the remaining measurements are of 
the period in which the plane was carried back to the start position. 
 
Clearly the accelerometers work, although their fidelity and accuracy were not tested.  
The analysis work to find correlations between accelerometer readings and the plane's 
behaviour is yet to be performed. 
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Figure 19: Flight #5, Accelerometer vs Time 

5.1.3 Elevation 
The GPS elevation measurement turned out to be surprisingly reliable and precise, 
although not particularly accurate.  Values measured on the ground at the La Trobe 
sports fields are up to 40 metres off the actual value of 68 metres AMSL (taken by a 
formal survey conducted by the university).  However, they are self-consistent within 
the time of a typical flight - when the plane returned to the launch point, it agreed with 
the values measured prior to takeoff of the same flight to within a few metres.  This 
implies some kind of calibration needs to be applied at the start of each flight, to 
adjust for this fixed offset.  However, the number of flights performed is not sufficient 
to be able to say, reliably, what the period of elevation fluctuations is or can be. 
 
As seen in the chart (Figure 20, next page), in this particular flight we achieved an 
elevation AMSL of approximately 600 metres.  Adjusting for the fixed offset noted 
previously, unfortunately, indicates we fell short of 600 metres by roughly 8 metres, 
although that's not to detract from the significance of the achievement - 600 metres is 
extremely high for a tiny model plane like ours.  It is certainly not the actual limit of 
the plane, either, as the height was constrained by safety concerns; beyond a few 
hundred metres in elevation the plane becomes challenging to track, and obviously the 
result of a serious accident like a wing snapping is potentially very serious. 
 
To emphasise the significance of this elevation achievement, consider that, in relative 
scale, 600 metres for a plane the size of ours is equivalent to 37,000 metres for a 747-
400. 
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Figure 20: Flight #3, Elevation vs Time  

 

5.1.4 Temperature & Pressure 
The temperature and pressure sensors worked well, although as noted they did not 
have any functional purpose.  Figure 21, below, shows the temperature and pressure 
over time during flight #3, while Figure 22, next page, shows the sampled values 
plotted relative to elevation.  Temperature values are in degrees, while pressure values 
are in unconverted ADC units (i.e. the value obtained direct from the ATmega2561’s 
ADC). 
 

 
Figure 21: Flight #3, Temperature & Pressure vs Time 
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Figure 22: Flight #3, Temperature & Pressure vs Altitude 

 
In the time domain it there is a clear fluctuation, albeit slow and slight, in the 
temperature.  There are many factors involved in the temperature - including heat 
generated by the motor - so it is not clear what caused this fluctuation.  Other flights 
have shown that in unusual circumstances (i.e. in flight #6 when the motor was caught 
in foliage, but still at full throttle) there is a significant rise in temperature, as shown 
in Figure 23 below.  
 

 
Figure 23: Flight #6, Temperature & Pressure vs Time 

 
Pressure exhibits little discernable trend in the time domain, and is crippled by the 
lack of resolution.  Nonetheless, the pressure over elevation as shown in Figure 22, 
above, shows a trend towards slightly lower pressure as elevation increases.  An 
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aviation rule of thumb is that pressure drops by roughly 1% per 100 metres of 
increased elevation [20].  That rule of thumb has us expect a roughly 5% drop at peak 
elevation in flight #3.  Unfortunately the resolution of the pressure measurement is too 
little to accurately verify, but it does seem to be of the right magnitude. 

5.1.5 Battery 
The battery monitor worked well, as demonstrated in Figure 24, below.  As soon as 
the throttle ramps up, the battery voltage is dragged down by over 10% due to the 
high load.  At around 6350 seconds, throttle is decreased in preparation for landing 
(which is typically done with reduced throttle or even un-powered).  Once the plane 
hits the ground a built-in mechanical safety feature causes the motor to be 
disconnected, and the battery voltage jumps back up by 10% percent. 
 

 
Figure 24: Flight #3, Battery vs Time 

 
There is a clear decrease in voltage over the duration of the flight, which appears to be 
linear, indicating that this would indeed be a useful and meaningful way to monitor 
the battery status and remaining flight time.  However, the LiPO batteries used do not 
have a very significant voltage drop (in contrast with NiMH batteries) until they are 
completely flat, at which point they rapidly drop by as much as 60%.  This makes 
them very good overall, but does make their status slightly harder to determine. 
 

5.2 Autopilot results 
Contrasted against successful flight results presented in the previous section, the 
autopilot results are unfortunately not as stunning.  The manual switching hardware 
was demonstrated to work reliably, both when the radio connection was lost and when 
the pilot manually switched over to automatic control.  The disappointing results were 
in the performance of the PID algorithms, due largely to a lack of time in which to 
properly tune them.  A significant disruption to our tuning flights was weather.  On 
the first tuning flight, #5, the wing snapped through no fault of ours.  Further, it was 



 49 

also discovered that the control surfaces need to be reset to neutral positions each time 
autopilot is entered – otherwise erratic behaviour can ensue.  
 
Despite the setbacks and lack of tuning, the bearing PID algorithm was shown to 
work on the ground using the magnetometer, and was observed to function at least 
partly in flight testing, albeit with overdamping as shown in Figure 25. Unfortunately 
with our flight tuning requiring fine flying weather, further tuning on the bearing PID 
was not possible, and no tuning was performed on the altitude PID.  Another problem 
is that the using the GPS receiver, bearing and altitude updates are only available once 
per second, which tends to skew the PID controls and limit responsiveness.  It was of 
course the purpose of the magnetometer to augment the GPS bearing information, 
giving faster bearing update information, but as examined in section 6.2.2 interference 
from the motor made the magnetometer all but useless at full throttle. 
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Figure 25: Autopilot bearing tracking 

 
Despite the unfortunate lack of conclusive results, it seems that the decoupled control 
works well – with only one of the control surfaces moving significantly at a time, 
producing expected results, even without proper tuning.  With faster update rates 
(preferably using gyros) and further tuning it is envisaged that the PID algorithms 
would behave far more robustly and reliably. 
 

5.3 Logging results 
Both Bluetooth and onboard logging worked, on most occasions, successfully and 
well.  Bluetooth logging turned out to be invaluable in the field, as once the system is 
assembled inside the plane and the wing attached, there is no direct access to it.  
Being able to observe the operating condition of the system at this point is of course 
critical to ensuring the system is ready for flight. 
 
There were two Bluetooth transceivers used to connect to the BlueSMiRF module 
during the project - the built-in Bluetooth on a G4 Powerbook, and an unbranded USB 
Bluetooth dongle from eBay.  Both worked well, although the range of the 
Powerbook's receiver was significantly less than that of the USB dongle, at 
approximately 40 metres as compared with 70 metres.  The quoted range of the 
BlueSMiRF module is up to 100 metres, although this seems a little optimistic; 
perhaps with a high gain antenna on the receiver. 
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The onboard logging worked very well during testing and on most flights, particularly 
after the performance optimisations made during testing.  Appendix D shows a small 
section of a flight log. 
 
There were three flights where data from the onboard log was lost.  In one - flight #6 
it was a simple user error - the card was removed without holding down the "arm" 
button in order to flush the internal buffers, so some amount of recently written data 
was lost.  The magnitude of the loss was surprising, but understandable in hindsight - 
the FAT table is accessed frequently, and so remains in cache virtually indefinitely.  
Thus, while the actual data was written to the card, the FAT table wasn't written back 
and so the log appeared far shorter than what was really written.  Luckily, with the aid 
of file recovery tools we were able to recover the vast majority of the data. 
 
On another occasion - flight #2 - logging stopped abruptly midway through the flight. 
The actual cause has not been determined, although it is theorised that a sudden jolt 
dislodged the card.  The flight data up to that point supports this hypothesis - the 
plane was in a sharp and rapid dive just prior to the loss of logging.  In future flights 
we used electrical tape to secure the card, just in case. 
 
The third flight from which we lost logging was flight #4, where logging simply stops 
midway.  There was more data written to the file on the card than the FAT indicated, 
which indicates in turn that the AVR simply stopped working at some point (as 
opposed to some kind of overriding corruption, of which there was no evidence).  
Even so, only a few dozen lines were lost from the log, indicating that logging did 
actually stop entirely shortly into the flight.  Again, the cause is not known 
conclusively, but the current leading hypothesis is that the linear regulator supplying 
the AVR was briefly overloaded, causing the AVR to brown out and reset.  The AVR 
would have then spent the rest of the flight sitting idle, waiting for the "arm" signal.  
This hypothesis arises because in this particular flight the servos were powered off the 
same regulator as the AVR, whereas in previous flights they were not.  To address 
this for future flights, a separate regulator was added to supply the servos 
independently. 
 
There was also the intention to add a special flag in EEPROM, that would be set at the 
start of the flight and manually cleared at the end, so that if the AVR were reset for 
any reason during the flight, it would see this flag is set and automatically arm itself, 
thus resuming operation.  There was not enough time left this late in testing, however, 
to implement this. 
 
But despite these setbacks - hopefully resolved now, as detailed - we did record 
excellent data, only a small portion of which has been presented here.  The full log 
files and all charts for all flights are included on the accompanying CD. 
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6. Discussion 
In this section we will subjectively evaluate how the project went, and in particular 
highlight the areas where things went especially well or especially poorly.  Many of 
these pitfalls in particular may be of assistance to future researchers, with a view to 
add to the pool of knowledge in the UAV arena. 

6.1 What went right 
There were a few aspects of the project which turned out to be either excellent design 
choices or just happy accidents that had positive consequences.  They are discussed 
below, in no particular order. 

6.1.1 GPS 
The GPS receiver worked exceptionally well, providing reliable position data with 
very good precision (typically a variance of only a few metres).  The interface, RS-
232, was easily connected to one of the ATmega2561's built-in UARTs, and the 
software for reading from the GPS similarly trivial.  Parsing the human-readable, 
ASCII GPS strings was more difficult, but the GPS receiver used also supports a 
binary format, which could be used in future to simplify processing. 
 
When it became evident that the magnetometer was not usable, the GPS bearing was 
used instead.  While the GPS bearing is not as responsive as the magnetometer 
(particularly at low ground-speed), it is immune to electromagnetic interference, and 
as such is perhaps more suited for measurements over long periods. 

6.1.2 Manual override & emergency autopilot switch 
Performing the manual override in hardware added significant complexity to the PCB, 
so it was somewhat contentious as to whether it was necessary or not; whether the 
switch could be controlled in software instead.  As it turns out, there were several 
problems discovered during testing - including during flight tests - which resulted in 
complete software failure, conclusively demonstrating the importance of the hardware 
implementation.  The implementation worked reliably throughout testing, and is an 
important safety assurance during flight tests. 

6.1.3 Bluetooth 
Given the failure of the initial wireless transmitter, it was uncertain whether that 
feature of radio communications would end up working.  The assertion that the 
communications was an important feature, and the resulting retry with the 
BlueSMiRF module, turned out to be an excellent decision.  The wireless 
functionality aided in debugging, particularly in the field where it was difficult - and 
at times entirely impossible – to access the PCB with a computer.  One key proof of 
this is pre-flight preparation, when the PCB is mounted inside the plane, along with 
all the other components, and is not easily accessible.  It was very handy to be able to 
connect wirelessly and watch the start-up sequence, as well as monitor the sensor 
outputs prior to and in the initial moments of flight. 
 
Despite the limited range of Bluetooth making the system inaccessible over the ranges 
of normal flight, it was - even aside from the benefits already noted - an excellent 
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proof of concept.  Future work could look at newer, more powerful Bluetooth 
modules, or alternative long-range equipment. 

6.1.4 FAT support 
Although we'll go on to criticise the actual FAT driver implementation in the next 
section, the decision to support FAT16/32 was an excellent one.  Being able to take 
any MMC or SDC, insert it into the UAV, record data on it, and then take the card 
and read the data straight off it on any computer is a fantastic capability.  It greatly 
aided debugging, where we could write a large amount of data to the card from the 
AVR, and then have that data up on a computer screen with just a few moments.  
Similarly, it is very handy to be able to retrieve the card after a flight, and simply 
copy off a single file containing the full flight log. 
 
It should also be possible to read the MMC/SDC from a PDA and possibly even some 
modern mobile phones, allowing access in the field where a computer may not be 
available. 
 

6.2 What when wrong 
In unfortunate contrast to the successes noted thus far, there were many design 
choices that were in hindsight poor, or major problems which only became apparent 
during implementation and testing, or even at times after.  We have been purposely 
highly critical of ourselves in this section, to emphasise and details these problems so 
that they won't be repeated in future. 

6.2.1 Flash logging software over-designed and overly complex 
In hindsight the software implementation of the onboard logging was overly complex, 
and over-designed.  The Physical Media layer was ultimately redundant, and remains 
only as an artefact of on early design choice that didn't pan out as expected.  It would 
be trivial to remove, but the emphasis - right up to the last moment - was on ensuring 
correct functionality of the system as a whole, not refactoring. 
 
Similarly, although less importantly, the Volume interface module could have it's 
essential functionality subsumed into the Standard I/O layer.  The Standard I/O layer 
itself could be dropped, and the FAT driver used directly.  This would remove the 
ability to support multiple file system formats simultaneously, which isn't at all 
important for our purposes, but also - and perhaps significantly - would require some 
of the Standard I/O functionality (such as parameter checking and it's simplified API) 
to be merged into the FAT driver, enlarging the already substantial driver 
implementation.  Again, all these are things that could be achieved relatively trivially, 
given the extra time we did not have. 
 
The biggest source of unnecessary bloat is within the FAT driver itself.  At over 3,000 
lines of dense C, it is anything but succinct.  This stems from the initial design being 
too overarching, and not being prepared to make certain assumptions - such as a fixed, 
512-byte sector size, an assumption which in hindsight is obvious.  Much of this 
stems from an initial inexperience with the FAT file system, and as such was probably 
inevitable.  There was also an emphasis during its implementation to "optimise" it by 
performing most things inline, including very common operations like simply 
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obtaining data from the physical media.  This optimisation was most certainly 
premature, and there is little evidence to suggest it was successful.  As a result, the 
code length was increased and it's readability reduced.  While it was refactored 
midway through development, which resolved some of the more glaring issues, there 
is still much work that could be done in this regard. 
 
In particular, using SRAM buffers more liberally could save a lot of development 
time and effort, and most likely improve performance on the AVR.  Again, they were 
discarded prematurely as part of the presumed optimisation.  As it turns out - easily 
visible in hindsight - we use so little of the 8K SRAM; we could have used substantial 
buffers without detriment. 
 
The official Microsoft specification for the FAT file system was not known to us until 
after the completion of the project.  Not having an authoritative reference made 
development difficult, and subsequently raises real concerns about the accuracy of the 
driver.  While comparing against the drivers in Windows XP and Mac OS X is a 
reasonable test, it is no substitute for following the full specification.  Now that the 
full specification is available to us, after the fact, it is clear there are many issues with 
the current implementation.  Most are minor, but nonetheless highlight the importance 
of obtaining such documentation early and understanding it well. 
 
The final flaw we'll detail here was the failure to recognise that ICC7 for AVR is 
little-endian.  While the AVR itself is an 8-bit microcontroller and thus has no 
intrinsic concept of endianness, for multibyte integers the compiler applies one.  Since 
no endianness was assumed, data was read and ordered manually.  This turns out to be 
extremely expensive using ICC7 for AVR, due to it's very poor assembly generation, 
and bloated the compiled code size (and execution time) substantially.  But yet again, 
it is relatively trivial to go through and utilise this assumption; it just wasn’t realised 
soon enough to be fixed. 
 
Perhaps to add insult to injury, just as the project was 
finishing up one of our preferred suppliers announced 
a new “DOSonCHIP” IC (Spark Fun SKU#: IC-
DOSonCHIP) that connects directly to an MMC/SDC 
on one side, a UART or SPI port on the other, and 
performs all the FAT16/32 work automatically, 
providing a simple API to the microcontroller for 
manipulating files at a high level.  If this little IC 
works as promised, it can replace our FAT driver and 
supporting infrastructure with perhaps only a few tens 
of lines of code.  This was most distressing to us, but is of course inevitable in the 
ever-advancing, ever-miniaturising electronic world.  And it certainly makes it easier 
for others to replicate our work in future. 

6.2.2 Motor interference 
The magnetometer was included even though there were concerns about interference 
due to the motor, which at full throttle draws approximately 6 amps.  When the motor 
is fully powered, the magnetometer gives a fixed bearing, clearly demonstrating 
motor interference.  However, even when the plane is at half throttle the 
magnetometer was shown to reliably measure the bearing.  Testing prior to the PCB 

Figure 26: DOSonCHIP 
Breakout board 
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design and fabrication could have revealed the problem, and the magnetometer could 
have been left off the PCB to save space, design time and power.  It also would have 
allowed us to seek alternative means for bearing determination.  While the ability to 
use the GPS bearing was a lucky save, it is not an ideal solution.  Future work should 
investigate ways to integrate the magnetometer that avoid or at least reduce the 
interference, or a replacement.  One possible solution would be to replace the brushed 
electric motor with a brushless motor, or a petrol motor, which should substantially 
reduce the level of interference. 
 
Alternatively, the software could be adapted to only rely on the magnetometer when 
the throttle is below a certain threshold.  During straight flight it may frequently be 
possible to lower the throttle, at least temporarily, in order to take measurements. 

6.2.3 Accelerometers 
The Accelerometers were another disappointing sensor.  When tested statically on the 
ground they act as tilt sensors.  In motion however, the accelerometers are affected by 
the acceleration forces of the aircraft as well as the earth’s gravitational field, 
rendering them far less useful as tilt sensors.  A better choice would have been the 
inclusion of a gyroscope which would have provided stable tilt measurements during 
motion.  Unfortunately by the time this problem was realised, neither the budget nor 
the time remaining allowed for the inclusion of a gyroscope.  

6.2.4 Pressure sensor's insufficient resolution 
The pressure sensor chosen for the project was the Freescale MPXM2202 which is 
likely quite suitable for our purposes; indeed, the data sheet suggest it can be used in 
an altimeter.  Unfortunately the output of the device didn’t have enough amplification 
and so we were only able to reliably measure altitude changes in the order of 
thousands of meters.  The inclusion of a pre-amplification stage, prior to inputting the 
signal to the ADC, would most likely resolve this issue. 
 
Additionally, towards the end of the project, a pressure sensor (SCP1000-D01) was 
released by one of our suppliers with a purported precision of as fine as 9cm.  Since 
the vertical error on the GPS due to vertical dilation is in the order of 10m, this device 
would hypothetically give us far more accurate altitude readings, and may have 
provided a suitable platform (when coupled with proximity sensors) for automatic 
landing systems. 

6.2.5 Manufacturing delays 
Due to the complexity and intricacy of our design we decided to outsource the PCB 
fabrication rather than having the PCB’s fabricated in the University Store.  This 
decision lead to unexpected delays, which were the sum of both manufacturer delays 
and submission delays (not on our part).  These associated delays resulted in a three 
week delay on top of the expected board delivery date and subsequently cut short our 
in-flight testing and algorithm optimisation time. 

6.2.6 ICC AVR7 bugs and limitations 
The ATmega2561 was more or less brand new when we first acquired it, and 
represented a significant step up from previous ATmega AVRs, in that it includes 256 
KB of Flash program memory.  While it was opportune to use the ATmega2561, 
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given it's extensive resources, it had the unfortunate down-side that many of the tools 
needed to be updated.  In particular, ImageCraft added reliable support for the 
ATmega2561 only in version 7.08 of their compiler [25], which was released only on 
September 11th, 2006, when software development was already well underway.  In 
hindsight, while things did work out fine in this regard in the end, it may have been 
wiser to use an older model ATmega, given we ultimately didn't use the majority of 
the 256 KB of program memory. 
 
Additionally, the choice to use a demo version of a very expensive commercial 
compiler was unwise.  Given that a commercial license was not a proviso of the 
project (although it could perhaps have been acquired nonetheless), this necessitated 
working around the limitations of the demo.  Initially the only concern was the demo 
expiry - 45 days after installation.  The intention was to reinstall the software after it 
expired, although as it turns out this requires reformatting the PC it is installed upon. 
 
However, before the software expired another issue arose - that the demo is limited to 
64 KB of program memory.  Luckily, this limitation is implemented in the IDE itself, 
not the underlying compiler, and can be overridden by utilising the manual 
configuration section of the IDE's compiler settings.  This took some time to work 
out, however. 
 
Furthermore, it was then discovered that the compiler did not support any single 
section being larger than 64 KB.  The solution to this was relatively trivial - dividing 
the MMC/SDC software off into it's own section - but took a significant amount of 
time to find. 
 
Luckily, the upside of these hacks was that when the trial period expired, and the 
compiler was supposed to revert to barely functional status, the aforementioned hacks 
overrode it's limitations still, and so we were able to keep using it. 
 
Nonetheless, the IDE and compiler themselves were very primitive and painful to use.  
The compiler supports only a limited part of the C standard, and has numerous bugs, 
which wasted significant amounts of time in devising workarounds and trying to 
rewrite perfectly valid C code to suite the compiler.  The readability and consequently 
reliability of the code was reduced as a result of these workarounds. 
 
Late in the project the possibility of switching to the free & open-source gcc for AVR 
(a.k.a. WinAVR) was considered, although by that time it was deemed too late to do 
so.  Were the project to be repeated, or further work done on it, it would definitely be 
wise to at least try WinAVR instead. 

6.2.7 Wireless transmitter 
In the original project design an inexpensive 433MHz wireless link was chosen from 
Laipac.  Even after extensive trial and error prototyping, this module worked rather 
unreliably at a range of only a few metres at best.  At John Devlin’s recommendation 
we ceased development on these wireless modules and opted for Bluetooth, which as 
already discussed was an excellent choice. 
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7. Conclusion 
This project was initiated with the ambitious goal of creating an autonomous UAV on 
a very limited budget and within a limited timeframe.  To measure the success of the 
project, this section will review each of the objectives individually, and summarise 
with our overall opinion of the project.  
 

Primary Objectives: 

 
• Outfit a model aircraft with a navigation and control system consisting of a 

GPS receiver, a magnetometer, accelerometers and an AVR microcontroller. 
 
This was achieved and is verified by the data gathered from numerous test 
flights described in section 5.1.  
 

• Write software for the microcontroller to sample each of the sensors and 
control the aircraft according to a pre-determined flight plan.  (proviso: 
Aircraft will be launched and landed under manual control) 
 
The microcontroller software samples and stores data from the various sensors 
mounted throughout the aircraft. The microcontroller, using decoupled PID 
controllers, is able to manipulate the control surfaces to follow a 
predetermined flight routes.  The PID controls that run this need further tuning 
and would be greatly benefited from the use of an onboard gyroscope as 
mentioned in Section 7.1. 
 

• Write computer software to develop a flight plan for the UAV to follow, with a 
communications link to facilitate transfer of the flight plan to the UAV. 
 
Computer software was developed to allow flight plans to be created, showing 
planes overlaid on maps supplied by Google.  The flight plan data is currently 
manually loaded into the aircraft on programming, but could be upgraded in 
future to allow wireless transfer of flight plans via the Bluetooth data link, or 
to be read from the MMC/SDC at initialisation time. 
 

• Support onboard recording of all flight data (e.g. GPS co-ordinates, 
magnetometer readings, etc) onto a MMC/SDC. 
 
Support for logging of flight data onto MMC/SDC works well, providing 
detailed logs which can be viewed on the supplementary CD. 
 

• Provide an in-flight wireless simplex communication channel to transmit data 
from the UAV back to a ground station (i.e. PC). 
 
The Bluetooth data-link is currently used as a simplex communications 
channel and provides data from the UAV to a ground based PC to a measured 
range of approximately 70m. 
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• Provide a control system to manually switch between autonomous control and 
human control. 
 
A hardware based manual switchover system was implemented and shown to 
operate reliably.  

 
Summary: Five primary objectives were met.  The sixth, full autonomous operation, 
was in development but has not been proven successful yet. 
 

Secondary Objectives 

• Addition of onboard sensors, with the sampled results stored on the onboard 
storage.  Types of sensors to be investigated include battery monitors, 
temperature sensors and pressure sensors. 
 
Pressure, temperature and battery voltage level sensors were employed 
onboard the UAV and provide data which is logged to the onboard SD card. 
 

• Install an onboard wireless video camera to provide proof-of-concept video 
images of the visual data acquisition capabilities of the UAV. 
 
A wireless video camera and a still digital camera were mounted onto the 
plane during the early design phases. The photographs and video acquired 
from these cameras can be viewed in the supplementary CD.  
 

• Implement Error Correcting Codes (ECC) for the wireless PC link 
transmission to ensure signal quality and attempt to recover corrupted data. 

 
• Implement a cyclic redundancy check (CRC) for the wireless PC link to detect 

data corruption. 
 
Once switching over to the Bluetooth radio transmitter, the need for us to 
worry about this was removed; the Bluetooth module ensures reliable data 
transfer. 
 

• Implement a failsafe autonomous control system, whereby if remote control is 
out of range the UAV will return to previous position where controller was in 
range, and progressively search for a signal. 
 
The lost data signal detection was implemented in hardware and demonstrated 
to effectively trigger an emergency control state within the microcontroller.  
The PIDs which control autonomous flight need further tuning before the 
plane can be expected to navigate its way back toward the pilot. 

 
Summary: Two secondary objectives have been met directly, two were met via a 
design change, and one is incomplete. 

Tertiary Objectives 

• Implement a visual landing system using a small camera and edge 
detection algorithms, to allow the aircraft to autonomously land on a 
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well defined runway. 
 
This objective was not attempted. 
 

• Implement a collision detection system based on ultrasonic or laser 
measurements to detect the presence of upcoming objects and avoid 
them. 
 
This object was not attempted. 

 
Summary: None of the tertiary objectives were met (or attempted). 
 
Final summary: Besides fulfilling the majority of the primary and secondary 
objectives, and thus establishing a reasonable measure a success, this project has been 
an exceptional learning experience, testing and developing our technical competence, 
teamwork and management skills.  The autonomous UAV field is still very young, 
with many new developments and technologies that should be further investigated. 
The next section provides a brief outline on some of the logical extensions to our 
project, which we ourselves have dreamt up and consider interesting and important 
things to pursue.  
 

7.1 Future work 
One aspect that was continually highlighted along the development of the project was 
the potential scope and application areas that beckon to be developed.  Due to both 
budgetary and time restrictions we were not able to pursue many of these ideas, but 
have summarised them to provide direction for future autonomous UAV projects.  

Complete Flight Planner 

The vast majority of the development time of the Flight Planner software was spent 
learning the ins and outs of Google Maps, with the intention of extracting imagery 
from Google Maps to be used in a custom 3D world view, as noted.  While the final 
key step - applying this imagery to the 3D world - was not implemented due to time 
shortages, much of the necessary infrastructure is implemented, such that it is a 
logical follow-on for future work.  The management of the imagery within OpenGL is 
not a trivial task, however, given it's huge volume in this application, so this is a task 
best left to someone with substantial OpenGL experience. 

Differential GPS, Galileo, and more 

To improve the accuracy of the GPS, the signal can be calibrated in real time based on 
known points.  This helps remove distortions from the ionosphere that typically 
reduce the accuracy of the system by an order of magnitude or more.  Differential 
GPS, as this augmented system is known, can provide accuracy down to as little as a 
metre [26]. 
 
A rival system to GPS, named Galileo, is currently being implemented by the 
European Union.  This modernised system is advertised as providing significantly 
higher accuracy - within a few metres, and even as little as a few tens of centimetres 
using the commercial service, or a differential service analogous to Differential 
GPS[4].  The Galileo system is expected to be operational from 2010 onwards, and 
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presents a very desirable future platform for a primary navigation sensor to be used in 
autonomous vehicles. 
 
Furthermore, it is expected that many receivers will support both systems, to provide 
at the least greater reliability (since there are in sum more satellites in view at any 
given time).  Additionally, there has been much excitement and preliminary work on 
combined GPS/Galileo receivers, that can use advanced algorithms and knowledge of 
the two systems to increase the accuracy by an additional order of magnitude over 
either of the systems separately - providing a resolution of tens of centimetres[27], 
even without using commercial services. 
 
While the timeframe for all this is some way into the future, the increased accuracy 
invites new applications and capabilities that can be developed in anticipation of 
Galileo's deployment. 

Use X-plane for modelling, flight simulation and flight planning 

Late in the project's development X-plane [28] was investigated in a general manner, 
looking at it's usefulness to the project.  X-plane is a famously powerful and accurate 
flight simulator, which uses actual airflow modelling and advanced real-time physics 
to provide an impressively accurate simulation of reality.  It is approved by the U.S. 
FAA for commercial pilot training, an impressive testimony to it's accuracy [29]. 
 
What is particularly attractive is that, because it performs actual airflow simulation, as 
opposed to most simulators which have simple, parameterised models, X-plane can 
simulate all manner of aircraft.  It also includes an application, Plane-Maker, for 
constructing new aircraft.  Thus, we could develop a simulation model of the UAV, 
down to the finest details. 
 
Additionally, while X-plane doesn't appear to have a flight planning capability built-
in, the author encourages 3rd party integration and extension of the software (which 
is, albeit, closed source) [30].  There is also a plugin API for writing C plugins [31].  
Hopefully, these provide the necessary access to the program to implement flight 
planning. 
 
X-plane runs on Windows, Mac OS X and Linux.  It is commercial, but a trial version 
is available, and it is relatively inexpensive to purchase, at US$69 (exact cost depends 
on chosen extras) [32]. 

Google Earth integration and possibly flight planning 

Google Earth was initially the prime candidate for our flight planning needs, given it 
provides a very powerful but simple interface, and runs on Mac OS X, Windows and 
Linux.  It also has a vibrant community, generating additional data for the program, 
and providing related tools to extend it. 
 
Unfortunately, as noted the small but critical failure of Google Earth is that it does not 
provide any way to adjust the elevation of a particular point within a path - only the 
elevation of the entire path.  Thus, it doesn't really serve our purposes very well.  
Although the plug-in API is not officially supported, it may be possible nonetheless to 
develop a plug-in which can correct this glaring omission. 
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Additionally, it would be nice if GPS data from the plane could be plotted in Google 
Earth - possibly even in real time, using the wireless link.  This may be achievable 
without plug-ins or 3rd party hacks, but will likely require some coercion of the 
plane's output into a format that Google Earth 
understands. 

Improved altimeter 

While the pressure sensor had nothing like the 
necessary resolution, as noted, it did demonstrate 
changing pressure with elevation.  As such, greater 
effort should be made in future to include high-
resolution pressure sensors, as they clearly have the 
potential be useful flight control sensors. 

Use a Gyroscope 

As mentioned in the discussion, the performance of our Autonomous UAV was 
severely restricted without the use of a gyroscope.  For future projects at least a dual-
axis gyroscope is recommended, as this would provide stable pitch and bank 
measurements, providing better flight control.  SparkFun Electronics now provides 
suitable dual axis MEMs based gyroscopes on a breakout board for under $70US. 
These are a relatively newly stocked line – at the outset of the project some price 
estimates we received for gyroscopes were in the order of $150US - $200US.  The 
quality of newer, cheaper models needs to be carefully gauged. 

Upgrade to more powerful micro 

While the ATmega2561 worked well, and reasonably met our current requirements, 
its limited performance was constraining in some places (e.g. CRC computation).  It 
was difficult to meet the update rate requirements of the PID (10Hz), especially 
during debugging when the logging system was under heavy load and causing 
significant delays. 
 
While the ATmega2561 will inevitably be supplanted with a more powerful successor 
sometime in the future, the 8-bit AVR line is ultimately not intended for the use to 
which we are trying to put it, and certainly will not be sufficient for future work.  
Atmel also have a family of 32-bit AVRs, which represent a relatively simple upgrade 
path from the current 8-bit family.  The AT32AP7000 member of the 32-bit family 
maintains its microcontroller roots, with built-in SPI, UART, etc.  It also provides 
built-in ethernet MACs and USB 2.0 PHYs.  It runs at up to 133MHz, which should 
provide quite enough power for immediate future needs, and hardware DSP which 
could be extremely handy for image processing. 
 
Alternatively, Atmel also provide a family of FPGA/AVR hybrids under the name 
FPSLIC, which combine an 8-bit AVR - much like we're already using - with an 
interconnected FPGA of up to 40K gates.  This hybrid approach could be an efficient 
way to offload some of the work from the AVR, such as menial tasks like CRC 
computation and signal pre-conditioning. 
 
Alternatively, an entirely new processor may be used.  At the start of the project the 
other primary contender was the gumstix line of general purpose Xscale boards.  
These provide a 32-bit Xscale processor (an ARM7 derivative) and run up to 

Figure 27: MEMs Altimeter  
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400MHz, with built-in Bluetooth and other features.  They represent a significant shift 
up in hardware abstraction, however; they run Linux and software would thus be 
written as kernel extensions and userland processes, as compared to the current model 
which is a monolithic, bare-to-the-hardware system.  They do have a vibrant 
development community, and use standard headers for connecting expansion boards 
(which can be custom made). 

Long range data link 

The Bluetooth data-link used in this project 
proved to be very reliable, but only over 
relatively short distances.  For future projects 
of this type a high powered data link with a 
quoted range in the order of 1.5km should be 
investigated.  These are available from 
SparkFun Electronics – our suppliers for the 
Bluetooth modules.  They are more expensive 
– having a total link cost of three times that of 
the Bluetooth data-link, but could potentially 
provide constant communication with the 
UAV, rather than communication only during 
the takeoff stage.  

Increase the size of the flight platform  

One of the major constraints within this project was weight. A future project using a 
larger plane – capable of carrying a larger payload - would open up the possibly for 
numerous enhancements.  A larger aircraft could permanently carry a still camera or 
video camera, and would allow for the additional weight that the high power radio 
link would add. 
 

7.2 Parting Words 
UAV technology is a rapidly growing area both in militarily research and civil 
applications.  This project has laid the groundwork for future university UAV 
research and leaves numerous possibilities for optimization and improvement.  As the 
technology continues to mature we can make one prediction – that more and more 
aircraft (and other vehicles in general) will have a microprocessor at the helm, rather 
than a pilot. 
 
It is our hope that others can build upon this project, particularly future engineering 
students at La Trobe University.  We look forward to the seeing what the future holds 
for this burgeoning field. 

Figure 28: Radio modem pair 
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Appendix A: Schematics 
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Appendix C: Flight log formatting 
Strings within the flight log are formatted as follows: 
 
ADC Data: 
"$UAVADC,BA:720,TE:323,PR:9,AX:353,AY:453*" 
BA = Battery 
TE = Temperature 
PR = Pressure 
AX = Accelerometer X 
AY = Accelerometer Y 
 
For GPS data: 
"$UAVGPS,TS:1794299271,LA:-22432475,LO:73183416,AL:93,BE:315,RG:1,GG:1*" 
TS = Time Stamp (multiplied by 1000 
LA = Latitude (mulplied by 60000) 
LO = Longitude (mulitplied by 60000) 
AL = Altidude (MSL) 
BE = Bearing (Degrees) 
RG = RMCGood (1 = good, 0 = bad) 
GG = GGAGood (1 = good, 0 = bad) 
 
Magnetometer data: 
"$UAVMAG,BE:321,AX:-224,AY:716*" 
BE = Bearing (Degrees) 
AX = Axis X value 
AY = Axis Y value 
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Appendix D: Example flight log 
 
A small excerpt from Flight 3 
Date 20-10-2006 
Time 11:45am 
La Trobe Sports Grounds 
$UAVGPS,TS:13515228,LA:-22635001,LO:87025964,AL:79,BE:288,RG:1,GG:1* 
$UAVADC,BA:896,TE:174,PR:9,AX:245,AY:310* 
$UAVADC,BA:896,TE:173,PR:9,AX:237,AY:316* 
$UAVGPS,TS:13516228,LA:-22635000,LO:87025956,AL:79,BE:278,RG:1,GG:1* 
$UAVMAG,BE:232,AX:-696,AY:175* 
$UAVADC,BA:897,TE:172,PR:9,AX:247,AY:328* 
$UAVADC,BA:897,TE:172,PR:9,AX:249,AY:348* 
$UAVGPS,TS:13517228,LA:-22635000,LO:87025949,AL:79,BE:284,RG:1,GG:1* 
$UAVADC,BA:896,TE:174,PR:9,AX:264,AY:287* 
$UAVMAG,BE:248,AX:-536,AY:319* 
$UAVADC,BA:897,TE:174,PR:9,AX:302,AY:342* 
$UAVGPS,TS:13518228,LA:-22634999,LO:87025942,AL:79,BE:288,RG:1,GG:1* 
$UAVADC,BA:896,TE:173,PR:9,AX:259,AY:331* 
$UAVADC,BA:896,TE:173,PR:9,AX:280,AY:318* 
$UAVGPS,TS:13519228,LA:-22634997,LO:87025936,AL:79,BE:296,RG:1,GG:1* 
$UAVMAG,BE:259,AX:-389,AY:317* 
$UAVADC,BA:897,TE:174,PR:9,AX:299,AY:329* 
$UAVADC,BA:811,TE:173,PR:9,AX:260,AY:282* 
$UAVGPS,TS:13520228,LA:-22634996,LO:87025931,AL:79,BE:305,RG:1,GG:1* 
$UAVADC,BA:812,TE:173,PR:9,AX:311,AY:331* 
$UAVMAG,BE:295,AX:174,AY:878* 
$UAVADC,BA:806,TE:174,PR:9,AX:327,AY:386* 
$UAVGPS,TS:13521228,LA:-22634996,LO:87025929,AL:79,BE:71,RG:1,GG:1* 
$UAVADC,BA:808,TE:173,PR:9,AX:294,AY:296* 
$UAVADC,BA:848,TE:191,PR:10,AX:321,AY:254* 
$UAVGPS,TS:13522228,LA:-22635001,LO:87025927,AL:80,BE:198,RG:1,GG:1* 
$UAVMAG,BE:319,AX:485,AY:474* 
$UAVADC,BA:816,TE:173,PR:9,AX:318,AY:239* 
$UAVADC,BA:800,TE:172,PR:9,AX:315,AY:320* 
$UAVGPS,TS:13523228,LA:-22635010,LO:87025913,AL:80,BE:248,RG:1,GG:1* 
$UAVADC,BA:848,TE:191,PR:9,AX:368,AY:440* 
$UAVMAG,BE:293,AX:253,AY:1474* 
$UAVADC,BA:828,TE:183,PR:8,AX:354,AY:301* 
$UAVGPS,TS:13524228,LA:-22635014,LO:87025886,AL:81,BE:267,RG:1,GG:1* 
$UAVADC,BA:802,TE:173,PR:9,AX:341,AY:348* 
$UAVADC,BA:832,TE:189,PR:9,AX:281,AY:209* 
$UAVGPS,TS:13525227,LA:-22635026,LO:87025867,AL:82,BE:196,RG:1,GG:1* 
$UAVMAG,BE:270,AX:-324,AY:687* 
$UAVADC,BA:802,TE:173,PR:9,AX:206,AY:162* 
$UAVADC,BA:920,TE:206,PR:9,AX:374,AY:533* 
$UAVGPS,TS:13526227,LA:-22635058,LO:87025877,AL:83,BE:150,RG:1,GG:1* 
$UAVADC,BA:815,TE:172,PR:9,AX:243,AY:240* 
$UAVMAG,BE:296,AX:82,AY:501* 
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$UAVADC,BA:851,TE:173,PR:8,AX:296,AY:292* 
$UAVGPS,TS:13527227,LA:-22635099,LO:87025889,AL:85,BE:186,RG:1,GG:1* 
$UAVADC,BA:821,TE:172,PR:9,AX:320,AY:402* 
$UAVADC,BA:800,TE:173,PR:9,AX:311,AY:208* 
$UAVGPS,TS:13528227,LA:-22635132,LO:87025877,AL:88,BE:210,RG:1,GG:1* 
$UAVMAG,BE:298,AX:229,AY:830* 
$UAVADC,BA:804,TE:173,PR:9,AX:310,AY:250* 
$UAVADC,BA:800,TE:172,PR:9,AX:353,AY:396* 
$UAVGPS,TS:13529227,LA:-22635158,LO:87025863,AL:92,BE:194,RG:1,GG:1* 
$UAVADC,BA:811,TE:173,PR:9,AX:343,AY:385* 
$UAVMAG,BE:303,AX:329,AY:831* 
$UAVADC,BA:796,TE:172,PR:9,AX:346,AY:404* 
$UAVGPS,TS:13530227,LA:-22635183,LO:87025862,AL:96,BE:172,RG:1,GG:1* 
$UAVADC,BA:807,TE:172,PR:9,AX:339,AY:412* 
$UAVADC,BA:810,TE:172,PR:9,AX:322,AY:427* 
$UAVGPS,TS:13531227,LA:-22635204,LO:87025865,AL:100,BE:174,RG:1,GG:1* 
$UAVMAG,BE:298,AX:127,AY:528* 
$UAVADC,BA:801,TE:173,PR:9,AX:313,AY:310* 
$UAVADC,BA:807,TE:173,PR:9,AX:288,AY:226* 
$UAVGPS,TS:13532227,LA:-22635220,LO:87025860,AL:104,BE:217,RG:1,GG:1* 
$UAVADC,BA:806,TE:173,PR:9,AX:299,AY:244* 
BAD GPS RMC String 
$UAVMAG,BE:296,AX:251,AY:1038* 
$UAVADC,BA:797,TE:173,PR:9,AX:323,AY:284* 
$UAVGPS,TS:13532227,LA:-22635220,LO:87025860,AL:109,BE:217,RG:0,GG:1* 
$UAVADC,BA:793,TE:173,PR:9,AX:306,AY:179* 
$UAVADC,BA:802,TE:185,PR:9,AX:352,AY:425* 
$UAVGPS,TS:13534227,LA:-22635241,LO:87025846,AL:113,BE:158,RG:1,GG:1* 
$UAVMAG,BE:292,AX:82,AY:769* 
$UAVADC,BA:796,TE:171,PR:9,AX:348,AY:425* 
$UAVADC,BA:804,TE:173,PR:9,AX:325,AY:433* 
$UAVGPS,TS:13535227,LA:-22635245,LO:87025852,AL:115,BE:97,RG:1,GG:1* 
$UAVADC,BA:804,TE:164,PR:9,AX:332,AY:432* 
$UAVMAG,BE:284,AX:-70,AY:912* 
$UAVADC,BA:805,TE:173,PR:9,AX:309,AY:433* 
$UAVGPS,TS:13536227,LA:-22635245,LO:87025850,AL:118,BE:262,RG:1,GG:1* 
$UAVADC,BA:796,TE:173,PR:9,AX:278,AY:400* 
$UAVGPS,TS:13536227,LA:-22635245,LO:87025850,AL:141,BE:262,RG:1,GG:1* 
$UAVADC,BA:804,TE:172,PR:9,AX:285,AY:210* 
$UAVMAG,BE:305,AX:340,AY:733* 
$UAVADC,BA:802,TE:172,PR:9,AX:325,AY:272* 
$UAVGPS,TS:13548226,LA:-22635273,LO:87025512,AL:144,BE:164,RG:1,GG:1* 
$UAVADC,BA:801,TE:172,PR:9,AX:309,AY:372* 
$UAVADC,BA:804,TE:173,PR:9,AX:274,AY:204* 
$UAVGPS,TS:13549226,LA:-22635301,LO:87025522,AL:145,BE:168,RG:1,GG:1* 
$UAVMAG,BE:283,AX:-93,AY:700* 
$UAVADC,BA:795,TE:171,PR:9,AX:292,AY:346* 
$UAVADC,BA:795,TE:177,PR:9,AX:273,AY:199* 
$UAVGPS,TS:13550226,LA:-22635327,LO:87025524,AL:147,BE:188,RG:1,GG:1* 
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APPENDIX E: FAT File System Format - Summary 
 
This is a very brief overview of the FAT file system format.  The authoritative 
reference on this topic is: 
 
1) Microsoft FAT32 File System Specification [21], released as part of their EFI 
support initiative. 
   http://www.microsoft.com/whdc/system/platform/firmware/fatgen.mspx 
 
This document was not known of until after the implementation in this project.  In lieu 
of the official references, the following were used: 
 
1) "FAT16 Structure Information", by Jack Dobiash. 
   http://home.teleport.com/~brainy/fat16.htm 
2) "FAT32 Structure Information", by Jack Dobiash. 
   http://home.teleport.com/~brainy/fat32.htm 
3) "File Allocation Table" on Wikipedia. 
   http://en.wikipedia.org/wiki/FAT16 
4) "FAT Boot Sector", by Alex Verstak. 
   http://averstak.tripod.com/fatdox/bootsec.htm 
5) "File Allocation Table", by Thomas Kjoernes. 
   http://home.no.net/tkos/info/fat.html 
6) "Detailed Explanation of FAT Boot Sector", Microsoft Knowledge Base article 
#140418. 
   http://support.microsoft.com/kb/q140418/ 
7) "How FAT Works", Microsoft TechNet. 
   http://technet2.microsoft.com/WindowsServer/en/Library/50cd4ffc-1389-423d-
9d02-1a898b2eb39f1033.mspx?mfr=true 
8) "Understanding FAT32 Filesystems", by Paul Stoffregen. 
   http://www.pjrc.com/tech/8051/ide/fat32.html 
 
 

E.1 FAT Boot Sector 
 
The first sector of every FAT volume is always the FAT boot sector.  It contains vital 
information about the volume, such as it's basic parameters (e.g. sector & cluster 
sizes) as well as identifying information (such as volume serial number and label). 
 
The FAT boot sector differs slightly between FAT12/16 and FAT32.  Both formats 
are shown in Figure N, below. 
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Figure 29: FAT Bootsector 

 
The meaning and usage of each field is: 
 
Intro (Yellow) 
Jump Instruction - The FAT boot sector is technically executable; older systems wrote 
their boot loader code into the sector.  Modern FAT boot sectors may still contain 
executable code, and are assumed as such, but must contain all the fixed fields as 
shown in Figure N.  For backwards compatibility, the first three bytes of the sector are 
assumed to be a jump instruction which redirects execution to an appropriate location 
after the non-executable portion of the sector. 
 
OEM Name - In theory, the name of the software which created the volume.  In 
reality, this is typically always "MSWIN4.1". 
    
BIOS Parameter Block (BPB) 
Bytes per sector - The number of bytes per sector.  Typically 512. 
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SpC - Sectors per cluster.  Typically 1 on small volumes such as MMC/SDCs. 
 
Reserved sector count - The number of reserved sectors at the start of the volume, 
including the FAT boot sector.  Must be at least 1, to cover the FAT boot sector.  The 
FAT(s) begin immediately after the reserved sectors.  Reserved sectors are typically 
used for backup FAT boot sectors, the FSInfo sector, or other 3rd party uses. 
 
#FATs - The number of FATs (File Allocation Tables) on the volume.  Typically 2. 
Max # of root dir entries - The maximum number of root directory entries (i.e. the 
length of the root directory divided by 32, the size of each entry).  Not used by 
FAT32, where it must be set to 0. 
 
Total # of sectors Small - The total number of sectors on the volume (including 
reserved sectors), if that number is less than 65536 (i.e. if it fits) and the format is 
FAT12/16; for FAT32, this field is always unused regardless of the number of sectors, 
and must be set to 0.  If set to 0 then the "Total # of sectors Large" contains the total 
number of sectors instead. 
 
Media desc - A constant indicating the media type.  Largely obsolete now; 0xF8 is 
typically used for permanent media, 0xF0 for removable media. 
 
Sectors per FAT - The number of sectors in each FAT (i.e. the size of each FAT).  
The meaning is the same for FAT12/16 & FAT32, although the field is in different 
places and has a different size.  FAT32 volumes must set the "old" field to 0. 
 
Sectors per track - The number of sectors per track.  Obsolete; a historical relic from 
an optimisation method that no longer applies. 
 
Number of heads - The number of I/O heads available in the drive.  Obsolete. 
 
Number of hidden sectors - Ambiguously defined, only relevant on partitioned media, 
and in any case obsolete. 
 
Total # of sectors Large - The total number of sectors on the volume, if that number is 
greater than 65535 or the volume is FAT32 formatted. 
    
FAT32 Extensions to the BPB (Blue) 
Flags - Specifies certain attributes of the volume, and how it should be used, as 
explained below.  All other bits are reserved and currently have no purpose. 
 
Bits 0-3 - Index of the active FAT.  Only meaningful if mirroring is disabled. 
 
Bit 7 - If clear, FAT mirroring is enabled, otherwise it is disabled.  FAT mirroring 
means all FATs should be updated in parallel; conversely, if it is disabled only the 
FAT specified by bits 0-3 should be modified. 
 
Vers Lo - The FAT32 minor version.  Typically 0. 
Vers Hi - The FAT32 major version.  Typically 0.  The FAT32 version in theory 
allows for future extensions to FAT32, although in reality it has never been used and 
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is always 0.0.  Drivers should refrain from using volumes that have a newer FAT 
version than the driver supports. 
 
Root cluster number - The cluster number of the root directory. 
 
FSInfo sector number - The sector number of the FSInfo sector, which must be within 
the reserved sector area. 
 
Backup boot sector # - The sector containing a backup copy of the FAT boot sector, 
which must be within the reserved sector area. 
 
Extended BIOS Parameter Block (EBPB) (Green) 
Phys drive# - The physical drive number.  Obsolete. 
 
Boot sig - FAT boot sector signature.  Must be 0x29. 
 
Volume serial number - A unique ID by which to identify the volume (in combination 
with the "Volume label").  Typically the current time is chosen as the value, when the 
volume is created. 
 
Volume label - The label of the volume.  There is also a special entry in the root 
directory which identifies the volume label; both should have the same value. 
 
FAT file system type - A string naming the FAT file system in use, typically "FAT16   
", "FAT12   " or "FAT32   ".  In theory this should not be used to identify the format 
of the volume, although it is consistently set for volumes created by most tools, 
including Microsoft's. 
 
Extras (Red) 
FAT boot sector marker - A marker identifying the sector as a FAT boot sector.  Has 
the value 0x55 0xAA.  Commonly assumed to be the last two bytes in the sector, but 
this is incorrect; it is always at 0x1FE, while the sector size is not necessarily 512 
bytes. 
 
 
As noted, a lot of this is cruft, obsolete and useless.  The important fields are the ones 
that tell us what the size of everything is: bytes per sector, sectors per cluster, sectors 
per FAT, total number of sectors, reserved sector count and number of FATs.  For 
FAT12/16 the maximum number of root directory entries is also important, while for 
FAT32 the root cluster number is similarly essential. 
 
Determining exactly which FAT format is used is tricky.  There are complex rules 
defined by Microsoft for distinguishing between the formats, which we won't bother 
detailing here.  As noted, it's usually fine to just read the "FAT file system type" field 
and compare that against known values (e.g. "FAT32   ").  For this project that 
worked correctly with all volumes tested, which were formatted under Windows XP 
and Mac OS X 10.4. 
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E.2 FAT Volume Layout 
FAT volumes are divided into either four (FAT12/16) or three (FAT32) main 
sections, as shown in Figure N, below.  In this section we list all values in terms of 
sectors.  To convert to a byte offset, multiply by the value in the "Bytes per sector" 
field. 
 

 
Figure 30: FAT Layout 

 
The formula for working out these offsets and sizes is as follows: 
 
  A = "Reserved sector count" 
  X = "Sectors per FAT" 
   
  B = "Reserved sector count" + "Sectors per FAT" 
   
  [More generally, the offset of FAT number N is "Reserved sector count" + (N x 
"Sectors per FAT")] 
   
  FAT12/16: 
    C = "Reserved sector count" + ("#FATs" x "Sectors per FAT") 
    Y = ("Max # of root dir entries" x 32) / "Bytes per sector" 
   
    [Note: Y will not always be a whole number.  It should be rounded up; any extra 
space in the last block of the root directory cannot be used.] 
   
    D = "Reserved sector count" + ("#FATs" x "Sectors per FAT") + ("Max # of root 
dir entries" x 32) / "Bytes per sector" 
   
  FAT32: 
    D = "Reserved sector count" + ("#FATs" x "Sectors per FAT") 
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E.3 FAT 
 
The actual FAT (File Allocation Table) is where the file system does all it's real work.  
The FAT is simply an array of numbers of a fixed size - 12 bits for FAT12, 16 bits for 
FAT16, 32 bits for FAT32.  The index of the number is the associated cluster number.  
It's value can indicate many things, such as the next cluster in a chain, that the cluster 
is unused, that the cluster contains a bad sector or sectors, etc. 
 
As mentioned, the FAT deals in terms of clusters, not sectors.  A cluster may be 
equivalent to a sector, if "Sectors per cluster" is 1, but this is typically not the case.  
Clusters are indexed starting from the beginning of the data section, although the first 
cluster in the data section is cluster #2, not #0; 0 and 1 are special cluster numbers, 
which don't actually have a physical representation on disk.  The first two entries in 
the FAT of course correspond to these two special clusters, and are consequently not 
actually used; their values are typically used to represent other information about the 
disk, although that information is not important to FAT drivers generally. 
 
The types of values each entry in the FAT can have are: 
 
                  FAT12        FAT16           FAT32 
    Available     000          0000            00000000 
    Reserved     001          0001            00000001 
    User Data    002 - FF6    0002 - FFF6     00000002 - 0FFFFFF6 
    Bad Cluster FF7          FFF7            0FFFFFF7 
    End Marker FF8 - FFF    FFF8 - FFFF     0FFFFFF8 - 0FFFFFFF 
 
The "User Data" type is the particularly interesting one; values in this range indicate 
the next cluster in a chain.  The "chain" is the basic building block of files; each file 
has a cluster number that refers to the first cluster in a chain; additional clusters are 
added to the chain as necessary to extend the size of the file. 
 
So, for example, the root directory (on a FAT32 volume) typically starts with the first 
real cluster, cluster #2.  The root directory typically has few entries, so it may take up 
only one cluster; thus the value of entry #2 in the FAT will be "End Marker". 
 
The root directory may contain a file, "Flight.log", who's directory entry indicates 
cluster #7 as the file's first cluster.  Since this file is very large, it spans many clusters.  
If the next cluster in the chain is #8, then the value of FAT entry #7 will be 8.  If the 
third cluster in the file is #13, the value of FAT entry #8 will be 13.  And so forth. 
 
All cluster chains must be terminated with an "End Marker".  No valid cluster chain 
may contain "Available", "Reserved" or "Bad Cluster" clusters. 
 
 

E.4 FAT Directories 
 
A FAT directory is essentially just like a file as far as the basic driver is concerned - it 
is just a chain of clusters.  In the case of a directory the contents of the "file" are of a 



 78 

particular format, and can point to other "files" (whether actual files or other 
directories).  A directory is only identified as such by being either the root directory 
(as specified in the FAT boot sector) or by being linked to from another directory, 
with the "Directory" attribute set.  We'll now look at the structure of each directory 
entry, to help explain. 
 

 
Figure 31: FAT Directory Entry 

 
Each directory entry is 32 bytes long, and has the structure shown in Figure N, above.  
Luckily, this structure is more or less than the same between all FAT formats.  The 
only difference between FAT32 and FAT12/FAT16 is that the "First cluster # Hi" is 
of course meaningless under FAT12/FAT16.  Luckily, it is essentially unused in most 
FAT12/FAT16 implementations; OS/2 and early versions of Windows NT used it to 
refer to an Extended Attributes cluster, but that usage is understandably rare today. 
 
The name field is more than just the human-readable name; the first byte of it 
indicates the status of the directory entry.  If this first byte is a period (0xE5) then the 
directory entry is currently unused.  If it is zero, then not only is the entry unused but 
it is the last entry in the directory.  All directories (except the root directory on 
FAT12/FAT16 volumes) must be terminated with such a directory entry.  A value of 
0x05 indicates the first byte really is a period (0xE5), and that the entry is thus used. 
 
Any other values indicate the directory entry is in use, and are the first byte of the 
filename.  Having said this, however, valid filenames may not contain: 
 
   - Any values less than 0x20 (excepting the special case of 0x05, as detailed above) 
   - Any of the values: 0x22, 0x2A, 0x2B, 0x2C, 0x2E, 0x2F, 0x3A, 0x3B, 0x3C, 
0x3D, 0x3E, 0x3F, 0x5B, 0x5C, 0x5D, or 0x7C. 
 
Filenames should contain uppercase letters only, and any unused portions should be 
filled with spaces (0x20).  The filename is divided into two implicit parts - the first 8 
bytes are the pure name (e.g. "FLIGHT  "), while the last 3 are the file extension (e.g. 
"LOG").  The file extension may be empty (all spaces), but the pure name may not 
(i.e. the filename ".LOG" is invalid and cannot be used). 
 
The remaining fields of the directory entry are: 
 
    Attr - The attributes of the entry, which determines both the entry type and 
additional information, as follows: 
                Bit 0 - Entry is read-only if this bit is set. 
                Bit 1 - Entry is a system file if this bit is set (should be protected from the 
user; maybe not shown at all). 
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                Bit 2 - Entry is hidden if this bit is set (should not be displayed to the user). 
                Bit 3 - Entry is a volume label (should only occur once, in the root 
directory, and should match the volume label as set in the FAT boot sector). 
                Bit 4 - Entry is a directory. 
                Bit 5 - Entry has been modified since last archive. 
                Bits 6 & 7 - Reserved. 
    Centi secs - Additional resolution for the creation time, in centiseconds (hundreds 
of a second).  Valid values are in the range 0 to 199 inclusive. 
    Creation time - The time of day at which the file was created, in the bizarre time 
format: 
                Bits 0 to 4 - Double-second count, from 0 to 29 inclusive. 
                Bits 5 to 10 - Minutes, from 0 to 59 inclusive. 
                Bits 11 to 15 - Hours, from 0 to 23 inclusive. 
    Creation date - The date on which the file was created, in the format: 
                Bits 0 to 4 - Day of month, from 1 to 31 inclusive. 
                Bits 5 to 8 - Month of year, from 1 to 12 inclusive. 
                Bits 11 to 15 - Years from 1980, from 0 to 127 inclusive (1980 - 2107, 
respectively). 
    Accessed date - The date on which the file was last accessed, in the same format as 
the creation date. 
    First cluster # Hi - The high 16-bits of the entry's cluster number.  Only valid for 
FAT32; for FAT12/16 should be ignored. 
    Modification time - The time at which the file was most recently modified (written 
or created), in the same format as the creation time. 
    Modification date - The date on which the file was most recently modified (written 
or created), in the same format as the creation date. 
    First cluster # Lo - The low 16-bits of the entry's cluster number. 
    File size - The length of the file in bytes.  This is always 0 for directories. 
 
In addition to user-created directory entries, every directory should contain two 
special directories, for files name "." and "..".  These should point to the start of the 
current directory and the start of the parent directory, respectively.  The later may 
point to 0, in the case of the root directory which has no parent directory. 
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Appendix F - Flight Planner Class Hierarchy 
 

 
Figure 32: Class Hierarchy 
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Appendix G - Google Maps WebView pre-defined 
HTML, Map.html 
 
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" 
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"> 
<html xmlns="http://www.w3.org/1999/xhtml"> 
<head> 
    <meta http-equiv="content-type" content="text/html; charset=utf-8"/> 
    <title>Google Maps</title> 
    <script 
src="http://maps.google.com/maps?file=api&amp;v=2&amp;key=ABQIAAAA8b1O
q4C6AoRMOT0VAs83ehSeVClRwDGHUSJPDdRTzrUmoDeFLBRe9yOLAEVwkP
9WAIs2oUGQ6EX4cA" type="text/javascript"></script> 
    <script type="text/javascript"> 
 
//<![CDATA[ 
 
function resizeMap() { 
    mapDiv.style.width = document.style.width; 
    mapDiv.style.height = document.style.height; 
    googleMap.checkResize(); 
} 
 
function load() { 
    if (GBrowserIsCompatible()) { 
        mapDiv = document.getElementById("map"); 
        googleMap = new GMap2(mapDiv); 
        googleMap.setCenter(new GLatLng(37.4419, -122.1419), 13); 
        googleMap.setMapType(G_HYBRID_MAP); 
        googleMap.addControl(new GLargeMapControl()); 
        GEvent.addListener(googleMap, "move", function() { 
            currentPosition = googleMap.getCenter(); 
            window.FlightPlanDocument.mapPositionChangedTo(currentPosition.lat(), 
currentPosition.lng()); 
        }); 
        GEvent.addListener(googleMap, "load", function() { 
            window.FlightPlanDocument.googleMapViewLoaded(); 
        }); 
    } 
} 
 
//]]> 
    </script> 
</head> 
<body onload="load()" onresize="resizeMap()" onunload="GUnload()"> 
    <div id="map" style="margin-left: 0px; margin-right: 0px; margin-top: 0px; 
margin-bottom: 0px; padding-left: 0px; padding-right: 0px; padding-top: 0px; 
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padding-bottom: 0px; position:absolute; top:0px; left:0px; width: 100%; height: 
100%;"></div> 
</body> 
</html> 


